Background: Antibacterial action of root canal filling is an important factor for successful root canal treatment, so the aim of the study was to identify and to compare the antimicrobial effect of new sealer (GuttaFlow) to commonly used endodontic sealers (AH Plus, Apexit and EndoFill) against four endodontic microbes. Materials and methods: Twenty patients aged (30-40) years with infected root canals were selected. Four types of microorganisms were isolated from root canals (E faecalis, Staphylococcus aureus, E coli and Candida albicans) and cultured on Mueller Hinton agar Petri-dishes. After identification and isolation of bacterial species, agar diffusion method was used to assess the antibacterial action of four contemporary endodontic sealers used in root canal obturation (AH Plus, Apexit, EndoFill and GuttafFlow). Four wells measuring (5mm depth and 4mm diameter) were created in each Petri dish and sealer was applied into them incubated overnight at 37 C° for bacterial species and 48 hr. at 37 C° for Candida albicans prior to determination of results. Zones of inhibition (no growth of bacteria) were examined around the wells containing sealer & diameters of the zones were measured in mm. The mean of inhibition zones for each group was measured and statistically analyzed among groups using ANOVA and between groups using LSD tests. Results: There was a highly significant difference (P<0.001) among all the tested groups. EndoFill showed the maximum antibacterial action against tested microorganisms. GuttaFlow showed moderate to weak antimicrobial effect, Apexit had weak effect, while AH Plus had no antibacterial action. Conclusion: All the tested materials except AH Plus had antibacterial efficacy against E faecalis, Staphylococcus aureus, E coli and Candida albicans. EndoFill had favorable results among tested sealers and E faecalis was the most resistant bacteria, but none of the materials totally inhibited microbial growth. Thus, endodontic treatment must be performed under aseptic conditions.
A Novel artificial neural network (ANN) model was constructed for calibration of a multivariate model for simultaneously quantitative analysis of the quaternary mixture composed of carbamazepine, carvedilol, diazepam, and furosemide. An eighty-four mixing formula where prepared and analyzed spectrophotometrically. Each analyte was formulated in six samples at different concentrations thus twentyfour samples for the four analytes were tested. A neural network of 10 hidden neurons was capable to fit data 100%. The suggested model can be applied for the quantitative chemical analysis for the proposed quaternary mixture.
The experimental and numerical analysis was performed on pipes suffering large plastic deformation through expanding them using rigid conical shaped mandrels, with three different cone angles (15◦, 25◦, 35◦) and diameters (15, 17, 20) mm. The experimental test for the strain results investigated the expanded areas. A numerical solution of the pipes expansion process was also investigated using the commercial finite element software ANSYS. The strains were measured for each case experimentally by stamping the mesh on the pipe after expanding, then compared with Ansys results. No cracks were generated during the process with the selected angles. It can be concluded that the strain decreased with greater angles of con
... Show MoreThe determination of manganese (II) using flow injection analysis with chemiluminescence detection was investigated. Mn2+ in sample solutions injected into a carrier stream of sodium bismuthate (NaBiO3) were oxidised to form MnO4- ions which were capable of producing luminescence after reaction with luminol/KOH in a flow cell. The linear range of the system is from 20 to 80 mg/L with a detection limit 8 mg/L. The proposed system is suitable for determination of Mn2+ in steel alloys after dissolution, filtration and dilution at a rate of approximately 60 samples per hour with a relative standard deviation (RSD)1.2%. Statistical comparison between the proposed system and standard spectrophotometric method revealed that there is no signific
... Show MoreDrilling deviated wells is a frequently used approach in the oil and gas industry to increase the productivity of wells in reservoirs with a small thickness. Drilling these wells has been a challenge due to the low rate of penetration (ROP) and severe wellbore instability issues. The objective of this research is to reach a better drilling performance by reducing drilling time and increasing wellbore stability.
In this work, the first step was to develop a model that predicts the ROP for deviated wells by applying Artificial Neural Networks (ANNs). In the modeling, azimuth (AZI) and inclination (INC) of the wellbore trajectory, controllable drilling parameters, unconfined compressive strength (UCS), formation
... Show MoreAmong many problems that reduced the performance of the network, especially Wide Area Network, congestion is one of these, which is caused when traffic request reaches or exceeds the available capacity of a route, resulting in blocking and less throughput per unit time. Congestion management attributes try to manage such cases. The work presented in this paper deals with an important issue that is the Quality of Service (QoS) techniques. QoS is the combination effect on service level, which locates the user's degree of contentment of the service. In this paper, packet schedulers (FIFO, WFQ, CQ and PQ) were implemented and evaluated under different applications with different priorities. The results show that WFQ scheduler gives acceptable r
... Show MoreDrilling deviated wells is a frequently used approach in the oil and gas industry to increase the productivity of wells in reservoirs with a small thickness. Drilling these wells has been a challenge due to the low rate of penetration (ROP) and severe wellbore instability issues. The objective of this research is to reach a better drilling performance by reducing drilling time and increasing wellbore stability.
In this work, the first step was to develop a model that predicts the ROP for deviated wells by applying Artificial Neural Networks (ANNs). In the modeling, azimuth (AZI) and inclination (INC) of the wellbore trajectory, controllable drilling parameters, unconfined compressive strength (UCS), formation
... Show Moreأن الطرق اللامعلمية هي نوع من الطرق الاحصائية الاستدلالية التي يمكن استخدامها للتوصل إلى أستنتاجات لذا كان حرص المؤلف على أصدار هذا الكتاب والذي يعمل على توضيح ( لماذا ؟ ومتى ؟ وكيف ؟ ) تستخدم كل طريقة إحصائية . وبإمكان القاريء سواء أكان أستاذا ً جامعيا ً أو باحثا ً أو طالبا ً في الدراسات العليا ( الماجستير والدكتوراه ) أو طالبا ً في الدراسات الأولية أن يتتبع جميع الخطوات لحساب كل قانون إحصائي وبدءا ً من عملية إدخ
... Show MoreA Novel artificial neural network (ANN) model was constructed for calibration of a multivariate model for simultaneously quantitative analysis of the quaternary mixture composed of carbamazepine, carvedilol, diazepam, and furosemide. An eighty-four mixing formula where prepared and analyzed spectrophotometrically. Each analyte was formulated in six samples at different concentrations thus twenty four samples for the four analytes were tested. A neural network of 10 hidden neurons was capable to fit data 100%. The suggested model can be applied for the quantitative chemical analysis for the proposed quaternary mixture.
This research is devoted to investigate the behavior and performance of reinforced concrete beams strengthened with externally bonded Carbon Fiber Reinforced Polymer (CFRP) laminates under the effect of torsion. In this study a theoretical analysis has been conducted using finite element code ANSYS. Six previously tested beams are used to investigate reinforced concrete beams behavior
under torsion, two of them are solid and the rest are box-section beams. Also, two beams are without CFRP reinforcement, which are used as control beams for the strengthened one, and the other four beams are strengthened with CFRP laminates with different number of layers and spacing. Numerical investigation is conducted on these beams, and comparisons b