Background: The bonded orthodontic retainer constructed from multistrand wire and composite is an efficient esthetic retainer, which can be maintained long-term. Clinical failures of bonded orthodontic retainers, most commonly at the wire/composite interface, have been reported. This in vitro investigation aimed to evaluate the tensile forces of selected multistrand wires and composite materials that are available for use in the construction of bonded fixed retainers. Materials and Methods: The study sample includes 120 wires with three types of retainer wires (3 braided strands\ Orthotechnology, 8 braided strands\ G&H Orthodontics, 6 coaxial strands\ Orthoclassic wires), two types of adhesive (flowable\ Orthotechnology, non flowable\ G&H Orthodontics composites) and two thickness of the adhesive (1mm, 2mm). The samples were prepared for each composite in which a wire was embedded; then the composite was light cured for 40 seconds and the specimens were stored in artificial saliva at 37°C in the incubator for 24 hours. The ends of the wire were drawn up and tensile force was applied through Tinius-Olsen universal testing machine until the resin failed and the results were recorded in Newton (N). Results: Statistical analysis showed that there was a highly significant difference (P ≤ 0.01) among the mean values of tensile forces of the three types of retainer wires in each thickness of composite with exception of a non significant difference (P > 0.05) between (3 braided) and (8 braided) and a non significant difference (P > 0.05) between (3 braided) and (6 coaxial) in both thickness of composite, a highly significant difference (P ≤ 0.01) between the two thickness of both composite types in each wire type and a highly significant difference (P ≤ 0.01) between the two types of composite in each wire type of both thickness of composite. Conclusion: The result of this study revealed that the 8 braided strands retainer wire shows the highest values of tensile force among the tested retainer wires, the non flowable composite demonstrates a higher tensile force than the flowable composite and increasing the thickness of composite overlying the wire increased the force required to detach the wire from the composite.
Background: Hyperthyroidism occurs due to over production of thyroid hormones, one types of hyperthyroidism was Graves, disease. Hyperthyroidism is characterized by high level of serum thyroxin, triiodothyronine and low level of thyroid stimulated hormones. Material and Methods: fifty two hyperthyroid patients, thirty patients under treatment with carbimazole and other twenty two patients under treatment with radioactive iodine, and sixty healthy control group. The average salivary flow rate was calculated as ml/5mint.The concentration of calcium, potassium, and total protein were determined in the salivary supernatant sample. This is done through different biochemical tests. Determination of salivary IgA is done by ELIZA. Results: The most
... Show MoreRhythm is considered one of the creative concepts in the recent architectural thought; it has emerged clearly as a mean of creating the highest levels of creativity in architecture, especially in contemporary architectural movements. The importance of rhythm has emerged, especially, when the architecture , its beginnings concentrated on the principle of the links with poetic structures. Many architectural studies deal with concept of rhythm in architecture with different ways various according to the trend of each study, this show the importance of studying the concept of rhythm in the architectural field in general. This study try to focus on the utilization of rhythm as creative system in architecture of heritage and contemporary
... Show MoreEsterification reaction is most important reaction in biodiesel production. In this study, oleic acid was used as a suggested feedstock to study and simulate production of biodiesel. Batch esterification of oleic acid was carried out at operating conditions; temperature from 40 to 70 °C, ethanol to oleic acid molar ratio from 1/1 to 6/1, H2SO4 as the catalyst 1 and 5% wt of oleic acid, reaction time up to 180 min. The optimum conditions for the esterification reaction were molar ratio of ethanol/oleic acid 6/1, 5%wt H2SO4 relative to oleic acid, 70 °C, 90 min and conversion of oleic 0.92. The activation energy for the suggested model was 26625 J/mole for forward reaction and 42189 J/mole for equilibrium constant. The obtained results s
... Show MoreThe following study was conducted to investigate the correlation between the expression of three different genes (NOB1, DDX47, CD101( with the occurrence and development of chronic myeloid leukemia (CML) in Iraq. The difference in the expression of these genes between patients and healthy controls was studied. Moreover the correlation of age and gender with CML occurrence and comparing with control was also examined. Results showed significant increases in mean of gene expression level (ΔCt) of patient groups for all genes compared to the corresponding ΔCt means in control group, also the gene expression folding (2-ΔΔCt) reflect significant differences in the expression of these genes and CD101, mRNA showed the highest level in CML pati
... Show MoreSeveral recent approaches focused on the developing of traditional systems to measure the costs to meet the new environmental requirements, including Attributes Based Costing (ABCII). It is method of accounting is based on measuring the costs according to the Attributes that the product is designed on this basis and according to achievement levels of all the Attribute of the product attributes. This research provides the knowledge foundations of this approach and its role in the market-oriented compared to the Activity based costing as shown in steps to be followed to apply for this Approach. The research problem in the attempt to reach the most accurate Approach in the measurement of the cost of products from th
... Show MoreFor aspirin estimated, a molecularly imprinted polymer MIP-ASP electrodes were generated by electro-polymerization process, the electrodes were prepared by combining the template (aspirin) with (vinyl acetate (VA), 1-vinylimidizole (VIZ) as a functional monomer and N, N-methylene bisacrylamide (MBAA) as crosslinkers using benzoyl peroxide (BPO) as an initiator. The efficiency of the membrane electrodes was analyzed by differential pulse voltammetry (DPV). Four electrodes were synthesized using two different plasticizers, di-butyl sebacate (DBS), di-octyl phthalate (DOP) in PVC matrix. Scanning electron microscopy (SEM) was used to describe the generated MIP, studying the electrodes properties, the slope, detection limit, and life
... Show MoreLandfill and incineration are the most common and widely used methods to dispose of solid wastes; both of these techniques are considered the main sources of pollution in the world due to the harmful toxic emissions that are considered an environmental problem. Because of the large areas used by landfills, they are not always considered an economical method. With the increase in the production of solid materials, solid wastes increase the pressure on incinerators and landfills, making the environmental pollution hazard more serious. Instead, these waste materials can be used in some other applications. One of the most important of these applications is asphalt pavements, which are the most used types of pavements in the
... Show MoreUltra-High Temperature Materials (UHTMs) are at the base of entire aerospace industry; these high stable materials at temperatures exceeding 1600 °C are used to manage the heat shielding to protect vehicles and probes during the hypersonic flight through reentry trajectory against aerodynamic heating and reducing plasma surface interaction. Those materials are also recognized as Thermal Protection System Materials (TPSMs). The structural materials used during the high-temperature oxidizing environment are mainly limited to SiC, oxide ceramics, and composites. In addition to that, silicon-based ceramic has a maximum-use at 1700 °C approximately; as it is an active oxidation process o
Portland cement concrete is the most commonly used construction material in the world for decades. However, the searches in concrete technology are remaining growing to meet particular properties related to its strength, durability, and sustainability issue. Thus, several types of concrete have been developed to enhance concrete performance. Most of the modern concrete types have to contain supplementary cementitious materials (SCMs) as a partial replacement of cement. These materials are either by-products of waste such as fly ash, slag, rice husk ash, and silica fume or from a geological resource like natural pozzolans and metakaolin (MK). Ideally, the utilization of SCMs will enhance the concrete performance, minimize
... Show More