Background: The aim of this study was to evaluate the expression of fibroblast growth factor-2 and Heparanase in salivary pleomorphic adenoma, and to correlate the two studied markers with each other and with clinicopathological parameters including: age, sex, tumor site and histopathological presentation. Methods: Sections of twenty five formalin-fixed paraffin embedded tissue blocks specimens of salivary pleomorphic adenoma were immunostained using monoclonal antibodies (Fibroblast growth factor-2 and Heparanase) to assess their expression in this tumor. Results: The expression of fibroblast growth factor-2 and Heparanase were positive in all pleomorphic adenoma cases (100%). The positive expression of fibroblast growth factor-2 was significantly correlated with histopathological presentation (p-value=0.032), but it was non-significantly correlated with FGF-2 and other clinicopathological parameters (age, sex, tumor site). The positiveexpression of Heparanse was non-significantly correlated with the histopathological presentation (p-value=0.088) as well as with other clinicopathological parameters (age, sex, tumor site). Statistically significant correlation was found between the expressions of both studied markers (p-value= 0.0005). Conclusion: The fibroblast growth factor-2 and Heparanase positive expression was noted in all cases of salivary pleomorphic adenoma signifying that both fibroblast growth factor-2 and Heparanase might contribute in the biological behavior of pleomorphic adenoma. The highly significant correlation found in the expression of both markers suggests their synergistic and cooperative role in the tumorigenesis of pleomorphic adenoma.
Objective(s): To assess the level of depression and anxiety among school age children with acute lymphoblastic leukemia under chemotherapy treatment and to find out the relationship between the level of depression and anxiety among the affected children and their demographic characteristics.
Methodology: A cross-sectional study was conducted on school age children both gender having acute lymphoblastic leukemia under chemotherapy treated and their age between 6 years to 12 years. The study started from the period of September, 19th 2020 to March,1st 2021. Non-probability (Purposive) sample of (114) children with acute lymphoblastic leukemia under chemotherapy was selected in attending hospital wards, outpatient and counseling clinics
A robust and sensitive analytical method is presented for the extraction and determination of six pharmaceuticals in freshwater sediments.
Number of new polyester and polyamide are prepared as derivatives from 5,5`-(1,4-phenylene)-bis-(1,3,4-thiadiazole-2-amine) [C1], three series of heterocyclic compounds were synthesized.The first series includes the Schiff base [C2] prepared from the reaction between compound [C1] with p-hydroxy benzaldehyde in presence of acetic acid and absolute ethanol , then these derivatives have reaction with maleic anhydride , phthalic anhydride and sodium azide, respectively to obtain the compounds [C3-5] contaning (oxazepine and tetrazole) rings.The third series of compounds [C1-5] has transformed to their polymers [C6-15] by reaction with adipoyl chloride and glutroyl chloride , respectively. The reaction was followed by T.L.C and ident
... Show MoreThe free Schiff base ligand (HL1) is prepared by being mixed with the co-ligand 1, 10-phenanthroline (L2). The product then is reacted with metal ions: (Cr+3, Fe+3, Co+2, Ni+2, Cu+2 and Cd+2) to get new metal ion complexes. The ligand is prepared and its metal ion complexes are characterized by physic-chemical spectroscopic techniques such as: FT-IR, UV-Vis, spectra, mass spectrometer, molar conductivity, magnetic moment, metal content, chloride content and microanalysis (C.H.N) techniques. The results show the formation of the free Schiff base ligand (HL1). The fragments of the prepared free Schiff base ligand are identified by the mass spectrometer technique. All the analysis of ligand and its metal complexes are in good agreement with th
... Show MoreSome metal ions (Mn+2, Co+2, Ni+2, Cu+2, Zn+2, Cd+2 and Hg+2) complexes of quinaldic acid (QuinH) and α-picoline (α-Pic) have been synthesized and characterized on the basis of their , FTIR, (U.V-Vis) spectroscopy, conductivity measurements, magnetic susceptibility and atomic absorption. From the results obtained the following general formula has suggested for the prepared complexes [M(Quin)2( α-Pic)2].XH2O where M+2 = (Mn, Co, Ni, Cu, Zn, Cd and Hg), X = 2, X = zero for (Co+2 and Hg+2) complexes, (Quin-) = quinaldate ion, (α-Pic) = α-picoline. The results showed that the deprotonated ligand (QuinH) by using (KOH) coordinated to metal ions as bidentate ligand through the oxygen atom of the carboxylate group (-COO-) and the nitrogen ato
... Show MoreThe present work involved four steps: First step include reaction of acrylamide ,N-?-Methylen-bis(acryl amide) and N-tert Butyl acryl amide with poly acryloyl chloride in the presence of triethyl amine (Et3N) as catalyst, the second step include homopolymerization of all products of the first step by using benzoyl peroxide(BPO) as initiator in (80-90)Co in the presence of Nitrogen gas(N2). In the third step the poly acrylimide which prepare in second step was convert into potassium salt by using alcoholic potassium hydroxide solution. Fourth step include Alkylation of the prepared polymeric salts in third step by react it with different alkyl halides(benzyl chloride, allylbromide , methyl iodide) by using DMF as solvent for(10-12) hours.
... Show MoreNew Azo ligands HL1 [2-Hydroxy-3-((5-mercapto-1,3,4-thiadiazol-2-yl)diazenyl)-1-naphth aldehyde] and HL2 [3-((1,5-Dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)diazenyl)-2-hydroxy-1-naphthaldehyde] have been synthesized from reaction (2-hydroxy-1-naphthaldehyde) and (5-amino-1,3,4-thiadiazole-2-thiol) for HL1 and (4-amino-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one) for HL2. Then, its metal ions complexes are synthesized with the general formula; [CrHL1Cl3(H2O)], [VOHL1(SO4)] [ML1Cl(H2O)] where M = Mn(II), Co(II), Ni(II) and Cu(II), and general formula; [Cr(L2)2 ]Cl and [M(L2)2] where M = VO(II), Mn(II), Co(II), Ni(II) and Cu(II) are reported. The ligands and their metal complexes are characterized by phisco- chemical spectroscopic
... Show More