Background: The aim of this study was to comparatively evaluate the push out bond strength (PBS) of root canal fillings using four different obturation techniques (single cone (SC), cold lateral compaction (CLC), continuous wave (CW), and carrier based gutta percha (CBG)). Materials and Methods: Forty mandibular premolar decoronated and instrumented with rotary ProTaper to F3 then teeth were divided randomly into 4 groups of 10 teeth for each as follow: group (I) single- cone obturation with matched-taper gutta-percha, group (II) cold lateral compaction technique, group (III) continuous wave of obturation technique, and group( IV) carrier based gutta-percha technique. Zinc oxide eugenol (ZOE) sealer was used as a root canal sealer for the four groups. After obturation of the root canals, all the roots were sectioned horizontally at three levels in the apical, middle, and cervical thirds of each group. PBS test was performed using digital universal testing machine. Mode of failures was evaluated using digital stereomicroscope (40 X). Collected data were analyzed statistically using one way ANOVA and Tukey test. Results: PBS of CW and CBG significantly higher than SC and CLC, but significantly there were no differences between CW and CBG, and between SC and CLC. Conclusion: Under the condition of this study it can be concluded that thermoplasticized techniques obtain superior PBS of the filling materials in comparisons with cold gutta percha obturation techniques.
: Cigarette smoking is a lifestyle behavior that causes significant adverse health effects. Cigarette smoke contains chemicals, many of which are lead to the production of reactive oxygen species (ROS), which can lead to apoptosis and autophagy. To estimate the association of Cigarette smoking with the autophagy and immunity, technology of real time polymerase chain reaction (RTPCR) for gene expression of (LC3A, LC3B, LC3C, myd88) was used. Enzyme-linked immunosorbent assay (ELISA) technique was utilized to measurement the amount of TNF-α protein. The ratios of LC3A/LC3B and LC3B/LC3C were calculated to estimate the autophagy flux. The results indicate the expression of LC3B, LC3C and Myd88 genes in smokers is increased significantly (p
... Show MoreA new method for the determination of the drug cefalexin in some Pharmaceuticals using (UV-Vis) and indirect Flame Atomic Absorption Spectrophotometer (FAAS) , Fe III should forms a chelating complex with cefalexin (CEX –Fe III) at pH (1-8) and the best pH for the formation of (CEX –Fe III) chelating complex was (2) .The complex extracted with Methanol and Dimethy-Sulphoxide .The mole-ratio method has been used to determine the structure of chelate (CEX - Fe III) and found to be 2:1 LM ( Ligand : Metal.) .
Keywords : Cefalexin , chelating complex.
CdS and CdS:Sn thin films were successfully deposited on glass
substrates by spray pyrolysis method. The films were grown at
substrate temperatures 300 C°. The effects of Sn concentration on the
structural and optical properties were studied.
The XRD profiles showed that the films are polycrystalline with
hexagonal structure grown preferentially along the (002) axis. The
optical studies exhibit direct allowed transition. Energy band gap
vary from 3.2 to 2.7 eV.
Cadmium oxide thin films were prepared by D.C magnetron plasma sputtering using different voltages (700, 800, 900, 1000, 1100 and 1200) Volt. The Cadmium oxide structural properties using XRD analysis for just a voltage of 1200 volt at room temperature after annealing in different temperatures (523 and 623) K were studied .The results show that the films prepared at room temperature have some peaks belong to cadmium element along the directions (002), (100), (102) and (103) while the other peaks along the directions of (111), (200) and (222) belong to cadmium oxide. Annealed samples display only cadmium oxide peaks. Also, the spectroscopic properties of plasma diagnostic for CdO thin films were determined and the results show that the el
... Show MoreThe research aims to use a new technology for industrial water concentrating that contains poisonous metals and recovery quantities from pure water. Therefore, the technology investigated is the forward osmosis process (FO). It is a new process that use membranes available commercial and this process distinguishes by its low cost compared to other process. Sodium chloride (NaCl) was used as draw solution to extract water from poisonous metals solution. The driving force in the FO process is provided by a different in osmotic pressure (concentration) across the membrane between the draw and poisonous metals solution sides. Experimental work was divided into three parts. The first part includes operating the forward osmosis process using T
... Show MoreThis study aims to remove Cd(II) ions from simulated wastewater by using Chlorophyceae algae (CA). Different parameters were studied to show their effects on the biosorption efficiency of CA. These parameters are: the effect of pH 3-7, initial metal ion concentration 20-200 mg/L, sorbent dos-age 0.05-2 g/L, contact time 5-180 min, and agitation speed 100-300 rpm. We found that both the Langmuir and Freundlich models appropriate for characterizing the metal removal process. The biosorption data fit best with the results of the pseudo-second-order kinetic model, demonstrating that the chemisorption process is the dominant mechanism controlling the removal. CA was char-acterized using the scanning electron microscopy test, prior to and post bi
... Show MoreIn this research, porous silicon (PS) prepared by anodization etching on surface of single crystalline p-type Si wafer, then Gold nanoparticle (AuNPs) prepared by pulsed laser ablation in liquid. NPs deposited on PS layer by drop casting. The morphology of PS, AuNPs and AuNPs/PS samples were examined by AFM. The crystallization of this sample was characterized by X-ray diffraction (XRD). The electrical properties and sensitivity to CO2 gas were investigated to Al/AuNPs/PS/c-Si/Al, we found that AuNPs plays crucial role to enhance this properties.
In an attempt to disposal from nuclear waste which threats our health and environments. Therefore we have to find appropriate method to immobilize nuclear waste. So, in this research the nuclear waste (Strontium hydroxide) was immobilized by Carbon nanotubes (CNTs). The Nd-YAG laser with wave length 1064 nm, energy 750 mJ and 100 pulses used to prepare CNTs. After that adding Sr(HO)2 powder to the CNTs colloidal in calculated rate to get homogenous mixing of CNTs-Sr(OH)2. The Sr(HO)2 absorbs carbon dioxide from the air to form strontium carbonate so, the new solution is CNTs-SrCO3. To dry solution putting three drops from the new solution on the glass slides. To investigate the radi
... Show More