Background: It has been well known that the success of mandibular implant- retained overdenture heavily depends on initial stability, retention and long term osseointegration this is might be due to optimal stresses distribution in surrounding bones. Types of mandibular implant- retained overdenture anchorage system and number of dental implants play an important role in stresses distribution at the implant-bone interface. It is necessary to keep the stresses below the physiologic tolerance level of the bone .since. And it is difficult to measure these stresses around bone in vivo. In the present study, finite element analysis used to study the stresses distribution around dental implant supporting Mandible implant retained overdenture Materials and methods: Eight models were constructed including four designs of anchorage system (ball-cup, ball-O Ring, bar without distal extension and bar with distal extension).The first group of models were supported by four dental implant and second group of models were supported by two dental implant only. Models constructed from the data obtained directly from patient The contour of bone was obtained from C.T scan image of patient, then data transferred to ANSYS program for modeling then load applied and solve the equation by the program, Specified nodes were selected at the rings of crestal bone (cortical bone) and cortical cancellous interface around each dental implant and fixed for all models to monitor the stress change in that regions of different design of MIR-OD.. After load application, Specified nodes were selected at the rings of crestal bone (cortical bone) and cortical cancellous interface around each dental implant and fixed for all models to monitor the stress change in that regions of different design of MIR-OD . Results: In the present study the stress distribution and maximum stresses value around dental implant had a relationship to the number of dental implant. , The result appeared that the maximum stresses and means of stresses value was lower in the first group of models (which was supported through the use four dental implant) than the second group of models (which was supported through the use of two dental implant only). For the first group of models the maximum stresses value around mesial implant was11.67, 10.51, 10.98 and 10.72 Mpa, while the maximum stresses around distal implant was 21.33, 18.51, 18.86, and17.56 Mpa for models 1,2,3 and 4respectively ,and the stresses around implant supporting second group of models was 22.52, 22.16, 20.51 and 19.60 Mpa for models 5,6,7and8 respectively .Statistical analyses of means value appeared that there was statistically significant difference in stresses means value around implant of the second group with that’s values around mesial and distal implant supporting first group of model . Regarding the result of both ball and bar system, it has been demonstrated that stress was greater with ball attachment and MIR-OD supported by the use of four dental implants and anchored by bar attachments with distal extension gives the minimum values of stresses than the rest models. Also the results show that higher stresses value was appeared at the cortical bone ring surrounding dental implant especially the distal implant nearest to the free end extension area. Also it was appeared that the best model was Mandible implant- retained overdenture that’s anchored by bar with distal extension and support by four dental implant. Conclusions: Bar-clips with distal extension mode of attachment considered the best type in producing the least stresses around dental implant regardless number of dental implant used.
Aim: The reduction in the amount of marginal bone is the most important demand for the long term success of dental implants. This prospective clinical study was aimed to investigate the marginal bone loss of early loaded SLActive implants with different dimensions and surgical approaches. Materials and methods Fifteen patients aged from 18 to 60 years were divided into 2 groups (flapped and flapless approach) that underwent delayed implant placement protocol with SLActive implants. The marginal bone level was estimated by cone-beam computed tomography during three different periods: preoperatively, 8 weeks after surgery and 24 weeks after loading of the prosthesis. Results: The mean value of marginal bone level was not significantly chan
... Show MoreBackground. Implant insertion in regions with poor bone quantity, such as the posterior maxilla, is potentially associated with an increased rate of implant failure. Calcium sulfate can be used as the coating material for commercially pure titanium (CpTi) and as the bone graft material around implants when bound to eggshell powder to enhance the bone quality and quantity of bone defect regions. This study performed a torque removal test to evaluate the effectiveness of eggshell powder as a bone substitute for filling bone defects around CpTi-coated implants coated with nanocrystalline calcium sulfate. Materials and Methods. Eighty screw implant designs were used in the tibiae of 20 white New Zealand rabbits. A total of uncoated 20 s
... Show MoreIn this paper, effective slab width for the composite beams is investigated with special emphasis on the effect of web openings. A three dimensional finite element analysis, by using finite element code ANSYS, is employed to investigate shear lag phenomenon and the resulting effective slab width adopted in the classical T-beam approach. According to case studies and comparison with limitations and rules stipulated by different standards and codes of practice it is found that web openings presence and panel proportion are the most critical factors affecting effective slab width, whereas concrete slab thickness and steel beam depth are less significant. The presence of web opening reduces effective slab width by about 21%.
... Show MoreDeep drawing process to produce square cup is very complex process due to a lot of process parameters which control on this process, therefore associated with it many of defects such as earing, wrinkling and fracture. Study of the effect of some process parameters to determine the values of these parameters which give the best result, the distributions for the thickness and depths of the cup were used to estimate the effect of the parameters on the cup numerically, in addition to experimental verification just to the conditions which give the best numerical predictions in order to reduce the time, efforts and costs for producing square cup with less defects experimentally is the aim of this study. The numerical analysis is used to study
... Show MoreBuried pipeline systems are commonly used to transport water, sewage, natural oil/gas and other materials. The beneficial of using geogrid reinforcement is to increase the bearing capacity of the soil and decrease the load transfer to the underground structures.
This paper deals with simulation of the buried pipe problem numerically by finite elements method using the newest version of PLAXIS-3D software. Rajkumar and Ilamaruthi's study, 2008 has been selected to be reanalyzed as 3D problem because it is containing all the properties needed by the program such as the modulus of elasticity, Poisson's ratio, angle of internal friction. It was found that the results
... Show MoreIn this work, the finite element analysis of moving coordinates has been used to study the thermal behavior of the tissue subjected to both continuous wave and pulsed CO2 laser. The results are compared with previously published data, and a good agreement has been found, which verifies the implemented theory. Some conclusions are obtained; As pulse width decreases, or repetition rate increases, or fluence increases then the char depth is decreased which can be explained by an increase in induced energy or its rate, which increases the ablation rate, leading to a decrease in char depth. Thus: An increase in the fluence or decreasing pulse width or increasing repetition rate will increase ablation rate, which will increase the depth of cut
... Show MoreEfficient operations and output of outstanding quality distinguish superior manufacturing sectors. The manufacturing process production of bending sheet metal is a form of fabrication in the industry of manufacture in which the plate is bent using punches and dies to the angle of the work design. Product quality is influenced by plate material selection, which includes thickness, type, dimensions, and material. Because no prior research has concentrated on this methodology, this research aims to determine V-bending capacity limits utilizing the press bending method. The inquiry employed finite element analysis (FEA), along with Solidworks was the tool of choice to develop drawings of design and simulations. The ASTM E290
... Show MoreComputer models are used in the study of electrocardiography to provide insight into physiological phenomena that are difficult to measure in the lab or in a clinical environment.
The electrocardiogram is an important tool for the clinician in that it changes characteristically in a number of pathological conditions. Many illnesses can be detected by this measurement. By simulating the electrical activity of the heart one obtains a quantitative relationship between the electrocardiogram and different anomalies.
Because of the inhomogeneous fibrous structure of the heart and the irregular geometries of the body, finite element method is used for studying the electrical properties of the heart.
This work describes t
... Show More