Background: Alterations in the microhardness and roughness are commonly used to analyze the possible negative effects of bleaching products on restorative materials. This in vitro study evaluated the effect of in-office bleaching (SDI pola office +) on the surface roughness and micro-hardness of four newly developed composite materials (Z350XT –nano-filled, Z250XT-nano-hybrid, Z250-mico-hybrid and Silorane-silorane based). Materials and methods: Eighty circular samples with A3 shading were prepared by using Teflon mold 2mm thickness and 10mm in diameter. 20 samples for each material, 10 samples for base line measurement (surface roughness by using portable profillometer, and micro-hardness by usingDigital Micro Vickers Hardness Tester), and 10 samples for after bleaching measurement. The appropriate bleaching procedure was performed on the top surface of test groups for 90 minutes total bleaching period. Then surface roughness and hardness were tested at the end of the duration. Statistical analysis was carried out using ANOVA, LSD and t-test. Results: There was a highly significant increase in surface roughness of all tested groups after bleaching. There is a highly significant increase in micro-hardness for Z250, there is decrease in Micro-hardness for siloraneand Z250xt and there is a non-significant increase in micro-hardness of Z350xt. Conclusion: bleaching has a negative effect on surface roughness of all the tested materials, as surface roughness increased after bleaching. Micro-hardness is a material dependent, there is different reaction to bleaching depending on the resin, load and size of the fillers used in the materials. Nano-filled composite is the material that has better performance than the other tested materials, as it is the material that has the least affection by bleaching.
The Maxwell equations have been formulated for a composite slab waveguide at x-band wave propagation. The eigenvalues of the system equations are obtained by using MATLAB program. These eigenvalues are used to obtain the wave propagation constant and a number of modes inside the slabs. A good correspondence was seen between the number of modes and the cut off thickness. The parameter that affects the performance of waveguide is the slab thickness. The propagation constant is usually adopted to characterize this type of waveguide and show how the cutoff frequency of the mode in the slab is increased dramatically by decreasing the frequency.
Our study focused on lower modes, the results for the transmission coefficient are then used to
Background: Calcium hydroxide and calcium-silicate materials used as direct pulp capping materials. The aims of this in vitro study is to compare among these materials in, the calcium ion release and pH change in soaking water after immersion of materials’ specimens in deionized water. Also Solubility and water sorption of materials’ specimens measured after soaking time. Calcium-silicate materials used were Biodentine, TheraCal and MTA Plus. Materials and methods: Four materials used in this study; Urbical lining (as control group), Biodentine, TheraCal and MTA Plus. Ten discs fabricated from each tested material, by using plastic moulds of 9 mm diameter and 1 mm thickness. Each specimen was immersed in 10 ml of d
... Show MoreElectro-chemical Machining is significant process to remove metal with using anodic dissolution. Electro-chemical machining use to removed metal workpiece from (7025) aluminum alloy using Potassium chloride (KCl) solution .The tool used was made from copper. In this present the optimize processes input parameter use are( current, gap and electrolyte concentration) and surface roughness (Ra) as output .The experiments on electro-chemical machining with use current (30, 50, 70)A, gap (1.00, 1.25, 1.50) mm and electrolyte concentration (100, 200, 300) (g/L). The method (ANOVA) was used to limited the large influence factors affected on surface roughness and found the current was the large influence f
... Show MoreFeed Forward Back Propagation artificial neural network (ANN) model utilizing the MATLAB Neural Network Toolbox is designed for the prediction of surface roughness of Duplex Stainless Steel during orthogonal turning with uncoated carbide insert tool. Turning experiments were performed at various process conditions (feed rate, cutting speed, and cutting depth). Utilizing the Taguchi experimental design method, an optimum ANN architecture with the Levenberg-Marquardt training algorithm was obtained. Parametric research was performed with the optimized ANN architecture to report the impact of every turning parameter on the roughness of the surface. The results suggested that machining at a cutting speed of 355 rpm with a feed rate of 0.07 m
... Show MoreObjectives. This study was carried out to quantitatively evaluate and compare the sealing ability of Endoflas by using differentobturation techniques. Materials and Methods. After 42 extracted primary maxillary incisors and canines were decoronated, theircanals were instrumented with K files of size ranging from #15 to #50. In accordance with the obturation technique, the sampleswere divided into three experimental groups, namely, group I: endodontic pressure syringe, group II: modified disposable syringe,and group III: reamer technique, and two control groups. Dye extraction method was used for leakage evaluation. Data wereanalyzed using one-way ANOVA and Dunnett’s T3 post hoc tests. The level of significance was set at p<0:05. Results.
... Show MoreNumerous drilling additives and materials are used continuously because they are necessary to support and give the required properties of the drilling fluid so that to ensure the stability of the borehole. This paper aspires to evaluate the rheological properties of bentonite (montmorillonite) Trefawey as an alternative to using commercial bentonite. Monitoring and evaluating of the rheological and filtration properties were prepared. This exertion aims to focus on the effect of hematite, and barite on the rheological properties of the three aforementioned bentonite types. An improvement in the rheological properties of bentonite (montmorillonite). Trefawey was observed after adding the previous heavy materials. Hematite has by some
... Show MoreThe primary objective of this study was to identify the mechanisms for the development and propagation of longitudinal cracks that initiate at the surface of composite pavement. In this study the finite element program ANSYS version (5.4) was used and the model worked out using this program has the ability to analyze a composite pavement structure of different layer properties. Also, the aim of this study was modeling and analyzing of the composite pavement structure with the physical presence of crack induced in concrete underlying layer. The results obtained indicates that increasing the thickness of the asphalt layer tends to decrease the stress intensity factor, which may be attributed to the rapidly decrease of horizontal tensile st
... Show MoreThe Nano materials play a very important role in the heat transfer enhancement. An experimental investigation has been done to understand the behaviors of nano and micro materials on critical heat flux. Pool boiling experiments have used for several concentrations of nano and micro particles on a 0.4 mm diameter nickel chrome (Ni-Cr) wire heater which is heated electrically at atmospheric pressure. Zinc oxide(ZnO) and silica(SiO2) were used as a nano and micro fluids with concentrations (0.01,0.05,0.1,0.3,0.5,1 g/L), a marked enhancement in CHF have been shown in the results for nano and micro fluids for different concentrations compared to distilled water. The deposition of the nano particles on the heater surface was the rea
... Show MoreIn this research, damping properties for composite materials were evaluated using logarithmic decrement method to study the effect of reinforcements on the damping ratio of the epoxy matrix. Three stages of composites were prepared in this research. The first stage included preparing binary blends of epoxy (EP) and different weight percentages of polysulfide rubber (PSR) (0%, 2.5%, 5%, 7.5% and 10%). It was found that the weight percentage 5% of polysulfide was the best percentage, which gives the best mechanical properties for the blend matrix. The advantage of this blend matrix is that; it mediates between the brittle properties of epoxy and the flexible properties of a blend matrix with the highest percentage of PSR. The second stage
... Show More