Background:The technology of nanoparticles has been expanded to many aspects of modern life. Titanium dioxide nanoparticles were of many nanomaterials utilized in biomedical applications. The interactions between nanoparticles and proteins are believed to be the base for the biological effect of the nanoparticles. The oxidation reaction of many substances is catalyzed by oxidizing enzymes called peroxidases. The activity of salivary peroxidase is elevated with periodontal diseases. the aim ofthis study is to examine the action of titanium dioxide nanoparticles on salivary peroxidase activity.Material and method75 participants were enrolled in this study—Periodontitis group with 44 participants and the non-periodontitis group with 31 participants. The participants' age range was 35 to 50 years for both groups. The clinical parameters of plaque index, gingival index, probing pocket depth and clinical attachment level were used in this study to determine the presence or absence of the periodontal disease. Unstimulated saliva was collected from all participants and analyzed for the activity of peroxidase enzyme under the effect of titanium dioxide nanoparticles. ResultsThe Periodontitis group showed higher peroxidase enzyme activity than the non-periodontitis group and the activity of salivary peroxidase showed no correlation with the clinical parameters. Titanium dioxide nanoparticles increased salivary peroxidase activity. ConclusionThis study demonstrated that the solid surface of nanoparticles could induce changes in the attached protein molecule which in turn causes changes in the effect of the nanoparticles on living tissue or organism. The titanium dioxide nanoparticles Play a role in increasing the activity of salivary peroxidase within the saliva of chronic periodontitis patients.
Background: Chronic periodontitis is an inflammatory disease that affects the supporting tissues of the teeth and it’s common among adults. Smoking is an important risk factor for periodontitis induces alveolar bone loss. Alkaline phosphatase enzyme is involved in the destruction of the human periodontium. It is produced by many cells such as polymorphonuclear leukocytes, osteoblasts, macrophages and fibroblasts within the area of the periodontium and gingival crevice. Osteocalcin is one of the most abundant matrix proteins found in bones and the only matrix protein synthesized exclusively there. Smaller Osteocalcin fragments are found in areas of bone remodeling and are actually degradation products of the bone matrix.The purpose of
... Show MoreBackground: Interleukine-2 is a multifunctional cytokine, considered a central regulator of host resistance against a variety of pathogens and has been recently demonstrated to exert an active role in the pathogenesis of periodontal diseases. The purpose of this study was to evaluate the effect of scaling and root planning on level of IL-2 in serum and saliva of patients with chronic generalized periodontitis, in relation to clinical parameters. Materials and Methods: A total of 50 subjects were enrolled, of which 25 had chronic generalized periodontitis and 25 periodontally healthy subjects as control. The clinical parameters included: gingival index, pocket probing depth, clinical attachment level and bleeding on probing. The level of
... Show MoreBackground: Obesity increases the host’s susceptibility by modulating the immune and inflammatory systems in a manner that predisposes to inflammatory tissue destruction and leaves an individual at greater risk of periodontitis. Melatonin is a pineal secretory product involved in numerous actions, such as regulation of internal biological clocks and energy metabolism, and it functions as an antioxidant and anti-inflammatory agent. There exists a substantial amount of evidence supporting the beneficial effect of melatonin supplementation on obesity and its complications. Aim of the study: To investigate the effects of systemic melatonin intake on periodontal health status and lipid profiles in obese periodontitis patients. Subjects and met
... Show MoreIn this work, the dyes Rhodamine B and Coumarin 102 containing titanium dioxide nanoparticles were used as scattering centers to fabricate a random gain medium. The laser dye was dissolved in hexanol and methanol solvent respectively. The titanium dioxide nanoparticles were synthesized by DC reaction magnetron spraying technique. The random-gain medium was made by adding 2.5 mg of titanium dioxide nanoparticles to Rhodamine and coumarin 102 dyes by coating the glass cell with two-sided titanium dioxide with high spectral efficiency and low production cost. A narrow line optical emission was detected at 565 nm for Rhodamine B and 534 nm for coumarin 102, where it was found that rhodamine B dye has FWHM 8 nm and coumarin dye 102 has FWHM 9 nm
... Show MoreThe present study included the microscopic and molecular identification of Entamoeba histolytica by using specific primers to detect four virulence factors possessed by Entamoeba histolytica. Virulence factors included Active Cysteine proteinase, Galactose/N-acetyl-D-galactose-lectin, Amoeba pore C and Phospholipase. Titanium dioxide nanoparticles (TiO2NPs) were synthesized from Pseudomonas aeruginosa which producing Pyocyanin pigment as a reducing agent to form it. After that we studied the ability ofTiO2NPs to inhibit virulence factors production and curing the genes responsible for encoding them by using four different dose 2 ,3, 4, 6 mg/Kg and administered by intraperitoneal injection
... Show MoreNanotechnology is a continually expanding field for its uses and applications in multiple areas i.e. medicine, science, and engineering. Biosynthesis is straightforward, less-toxicity, and cost-effective technology. TiO2 NPs biosynthesis has attained consideration in recent decades. In this study, probiotic bacteria were isolated from cow’s raw milk samples, and then were identified by using the Vitek2 system; as Leuconostoc spp. included Leuconostoc mesenteroides subsp. mesenteroides (Leu.1), Leuconostoc mesenteroides subsp. cremoris (Leu.4), and Leuconostoc pseudomesenteroides (Leu.14). All Leuconostoc spp. isolates showed an ability for TiO2 NPs bio-production, after being incubated at anaerobic conditions (30 o C/ 24 h) in DeM
... Show MoreTiO2 thin films were deposited by Spray Pyrolysis with thickness ((350±25) nm) onto glass substrates at (350°C), and the film was annealed at temperatures (400 and 500)°C. The structural and morphological properties of the thin films (TiO2) were investigated by X-ray diffraction, Field emission scanning electron microscopy and atomic force microscope. The gas sensor fabricated by evaporating aluminum electrodes using the annealed TiO2 thin films as an active material. The sensitivity of the sensors was determined by change the electrical resistance towards NO2 at different working temperatures (200
Background: It had been found that passive smoking may have the same harmful effect as tobacco cigarettes smoking. Aims: This study was conducted to determine the effect of passive smoking on salivary glutathione peroxidase and selenium in relation to dental caries severity. Settings and Design: The sample consisted of 120 children aged 5 years old, classified into four groups according to the number of cigarettes smoked by their fathers daily: Passive smoking children of 5-10 cigarettes, those of 10–15 cigarettes daily, those of 15–20 cigarettes daily and non-passive smoking children of no smokers indoor (the control group). The sample was further classified according to dental caries severity into three groups: mild (DMFS values <4
... Show MoreIn this work, solid random gain media were fabricated from laser dye solutions containing nanoparticles as scattering centers. Two different rhodamine dyes (123 and 6G) were used to host the highly-pure titanium dioxide nanoparticles to form the random gain media. The spectroscopic characteristics (mainly fluorescence) of these media were determined and studied. These random gain media showed laser emission in the visible region of electromagnetic spectrum. Fluorescence characteristics can be controlled to few nanometers by adjusting the characteristics of the host and nanoparticles as well as the preparation conditions of the samples. Emission of narrow linewidth (3nm) and high intensity in the visible region (533-537nm) was obtained.
In this work, solid random gain media were fabricated from laser dye solutions containing nanoparticles as scattering centers. Two different rhodamine dyes (123 and 6G) were used to host the highly-pure titanium dioxide nanoparticles to form the random gain media. The spectroscopic characteristics (mainly fluorescence) of these media were determined and studied. These random gain media showed laser emission in the visible region of electromagnetic spectrum. Fluorescence characteristics can be controlled to few nanometers by adjusting the characteristics of the host and nanoparticles as well as the preparation conditions of the samples. Emission of narrow linewidth (3nm) and high intensity in the visible region (533-537nm) was obtained.