Most dental works require a diagnostic impression; alginate is contemplated as the most popular material used for this purpose. Titanium dioxide nanoparticles show evidence of antimicrobial activity in the recent era, for this purpose, this study aimed to evaluate the effect of adding Titanium dioxide nanoparticles on antimicrobial activity and surface detail reproduction of alginate impression material. Materials and methods: Titanium dioxide nanoparticles (purity = 99%, size= 20nm) was added to alginate at three different concentrations (2%, 3% and 5%). 84 samples were prepared in total. Samples were tested for antimicrobial activity using a disc diffusion test, and surface detail reproduction was done using (ISO 21563:2021). One-way ANOVA and independent sample t-test were used for data analysis through SPSS software. Results: for the antimicrobial test, inhibition zones for Streptococcus mutans and Candida albicans showed significant changes concerning the alteration in Titanium dioxide nanoparticle concentrations. The inhibition zone significantly increased with an increase in the percentage of Titanium dioxide nanoparticles. The mean of the inhibition zone for S. mutans was superior to C. albicans and the difference was statistically significant. Regarding surface detail reproduction, the control group, 2% and 3% groups manifested very similar results, only the group to which 5% of Titanium dioxide nanoparticles were added showed a decline in detail reproduction when compared to the other three groups. Conclusion: Within the limitation of this study, we can conclude that the antimicrobial activity against S mutans and C. albicans were significantly increased in modified groups, and this escalation was directly linked to the increase in Titanium dioxide nanoparticles concentration. In contrast, the surface detail reproduction was decreased when adding 5% Titanium dioxide nanoparticles to alginate.
Background: Halitosis represents a common dental condition, although sufferers are often not conscious of it. It is common among humans around the world and is usually caused by an accumulation of bacteria in the mouth as a result of gum disease, food, or plaque. This study aimed to determine the prevalence of oral hygiene practices, smoking habits and halitosis among undergraduate dental students and correlate the oral hygiene practices, oral health conditions to the prevalence of self perceived oral malodor. Materials and Methods: Clinical examination of 250 dental students and a self-administered questionnaire were included in this study. A questionnaire was developed to assess the self-reported perception of oral breath, awareness of b
... Show MoreThis study included synthesizing silver nanoparticles (AgNPs) in a green method using AgNO3 solution with glucose exposed to microwave radiation. The prepared NPs were also characterized using ultraviolet and visible (UV-vis) spectroscopy and scanning electron microscopy (SEM). The UV/vis spectroscopy confirmed the production of AgNPs, while SEM analysis showed that the typical spherical AgNPs were 30 nm and 50 nm in size for the NPs prepared using black tea (B) and green tea (G) as reducing agent, respectively. The changes in some of the biochemical parameters related to the liver and kidneys have been analyzed to evaluate the probable toxic effects of AgNPs. 40 adult male mice were included in this study. To assess the probable he
... Show MoreA group of amine derivatives [4-aminobenzenesulfonamide derivatives, 2-aminopyridine and 2-aminothiazole] incorporated to α-carbon of diclofenac a well known non-steroidal anti-inflammatory drug (NSAID) to increase bulkiness were designed and synthesized for evaluation as a potential anti-inflammatory agents with expected COX-2 selectivity. In vivo acute anti-inflammatory activity of the selected final compounds (9, 12 and 13) was evaluated in rats using egg-white induced edema model of inflammation in a dose equivalent to (3 mg/Kg) of diclofenac sodium. All tested compounds produced a significant reduction in paw edema with respect to the effect of propylene glycol 50
... Show MoreMicrobial Desalination Cell (MDC) is capable of desalinating seawater, producing electrical power and treating wastewater. Previously, chemical cathodes were used, which were application restrictions due to operational expenses are quite high, low levels of long-term viability and high toxicity. A pure oxygen cathode was using, external resistance 50 and 150 k Ω were studied with two concentrations of NaCl in the desalination chamber 15-25 g/L which represents the concentration of brackish water and sea water. The highest energy productivity was obtained, which amounted to 44 and 46 mW/m3, and the maximum limit for desalination of saline water was (31% and 26%) for each of 25 g / L and 15 g / L, respectively, when using an ex
... Show More4-chloro and 4- nitro substituted phenol and aniline incorporated to a carboxylic group of naproxen a well-known non-steroidal anti-inflammatory drug (NSAID) to increase bulkiness were synthesized for evaluation as a potential anti-inflammatory agents with expected COX-2 selectivity. In vivo acute anti-inflammatory activity of these compounds (I-IV) was evaluated in rats using egg-white induced edema model of inflammation in a dose equivalent to (2.5 mg/Kg) of naproxen. All tested compounds produced a significant reduction in paw edema with respect to the effect of propylene glycol 50% v/v (control group). Moreover, compounds I and IV might show higher effect comparable to that of naproxen and to that of compounds II & III whic
... Show MoreGold nanoparticles AuNPs have proven to be powerful tools in various nanomedicine applications, because of their photo-optical distinctiveness and biocompatibility. Noble metal gold nanoparticles was prepared by pulsed laser ablation method (1064-Nd: YAG with various Laser power from 200 to 800 mJ and 1 Hz frequency) in distil water. The process was characterized using UV-VIS absorption spectroscopy. Morphology and average size of nanoparticles were estimated using AFM and X-ray diffraction (XRD) analysis which show the nature of gold nanoparticles (AuNPs). Antibacterial activity of gold nanoparticles as a function of particles concentration against gram negative bacterium Escherichia coli and gram positive bacterial Staphylococcus aureu
... Show MoreThis study was carried out to prepare and characterize domperidone nanoparticles to enhance solubility and the release rate. Domperidone is practically insoluble in water and has low and an erratic bioavailability range from 13%-17%. The domperidone nanoparticles were prepared by solvent/antisolvent precipitation method at different polymer:drug ratios of 1:1 and 2:1 using different polymers and grades of poly vinyl pyrolidone, hydroxy propyl methyl cellulose and sodium carboxymethyl cellulose as stabilizers. The effect of polymer type, ratio of polymer:drug, solvent:antisolvent ratio, stirring rate and stirring time on the particle size, were investigated and found to have a significant (p? 0.05) effect on particle size. The best formul
... Show MoreIn this work the fabrication and characterization of poly(3-hexylthiophene) P3HT-metallic nanoparticles (Ag, Al). Pulsed Laser Ablation (PLA) technique was used to synthesis the nanoparticles in liquid. The Fourier Transformer Infrared (FTIR) for all samples indicate the chemical interaction between the polymer and the nanoparticles. Scanning Electron Microscopic (SEM) analysis showed the particle size for P3HT-AgNps samples between 44.50 nanometers as well the spherical structure. While for P3HT-AlNps samples was flakes shape. Energy Dispersive X-ray (EDX) spectra show the existing of amount of metallic nanoparticles.
Ni-Co-Mn-Mg ferrite nanoparticles with the formula (Ni,Co)xMn0.25-xMg0.75Fe2O4 were synthesized in this work by employing the sol-gel auto-combustion process, with nitrates used as the cations source and citric acid (C6H8O7) as the combustion agent. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX), and a vibrating sample magnetometer (VSM) were used to characterize the structural, morphological, and magnetic properties of ferrite powders. The XRD measurements showed crystallite sizes ranging between 24 - 28 nm. The FE-SEM images show the presence of agglomeration as well as a non-homogeneous distribution of the samples. On the other hand, the stoichiometry of the react
... Show More