Background: Tooth wear is one of the most common problems in the older dentate population which results from the interaction of three processes (attrition, abrasion and erosion) and it affects all societies, different age groups, and all cultures. This study was achieved to evaluate the prevalence and distribution of tooth wear among institutionalized residents in Baghdad city\ Iraq. Subjects and Methods: This survey was accomplished on four private and one governmental institution in Baghdad city. One-hundred twenty three (61 males, 62 females) aged 50-89 years were participated in this study. The diagnosis and recording of tooth wear were according to criteria of Smith and Knight. Results: The prevalence of tooth wear was 100% with a mean (30.79± 19.39) and median (28). The highest grade of tooth wear recorded was grade 2 (56.9%), followed by grade 3 (26%), grade 4 (17.1%). There was no statistically significant difference of total tooth wear among age groups (P>0.05), astatistically significantdifference was seen regarding the severity of tooth wear among different age groups; for grade 2 and grade 4 (P <0.05), while a statistically highly significant difference recorded for both grade 1 and grade 3. A statistically highly significant difference of the total tooth wear was recorded between the total males and females (P <0.01). Conclusion: The occurrence of tooth wear among those subjects was high thus they need oral health policy makers for promotion, prevention and restorative care.
In this paper, Bayes estimators of Poisson distribution have been derived by using two loss functions: the squared error loss function and the proposed exponential loss function in this study, based on different priors classified as the two different informative prior distributions represented by erlang and inverse levy prior distributions and non-informative prior for the shape parameter of Poisson distribution. The maximum likelihood estimator (MLE) of the Poisson distribution has also been derived. A simulation study has been fulfilled to compare the accuracy of the Bayes estimates with the corresponding maximum likelihood estimate (MLE) of the Poisson distribution based on the root mean squared error (RMSE) for different cases of the
... Show MoreThe goal (purpose) from using development technology that require mathematical procedure related with high Quality & sufficiency of solving complex problem called Dynamic Programming with in recursive method (forward & backward) through finding series of associated decisions for reliability function of Pareto distribution estimator by using two approach Maximum likelihood & moment .to conclude optimal policy
In this paper, the 5 minutes measured wind speed data for year 2012 at 10 meter height for Tweitha have been statically analyzed to assess the time of wind turbine electrical power generation. After collection Tweitha wind data and calculation of mean wind speed the cumulative Weibull diagram and probability density function was ploted, then each of cumulative Weibull distribution, cut-in and furling turbine wind speed could be used as a mathematical input parameters in order to estimate the hours of electrical power generation for wind turbine during one day or one year. In Tweitha site, found that the average wind speed was (v= 1.76 m/s), so five different wind turbines were be selected to calculate hours of electrical generation for A
... Show MoreIn this study, we present different methods of estimating fuzzy reliability of a two-parameter Rayleigh distribution via the maximum likelihood estimator, median first-order statistics estimator, quartile estimator, L-moment estimator, and mixed Thompson-type estimator. The mean-square error MSE as a measurement for comparing the considered methods using simulation through different values for the parameters and unalike sample sizes is used. The results of simulation show that the fuzziness values are better than the real values for all sample sizes, as well as the fuzzy reliability at the estimation of the Maximum likelihood Method, and Mixed Thompson Method perform better than the other methods in the sense of MSE, so that
... Show MoreThis paper discusses reliability of the stress-strength model. The reliability functions ð‘…1 and ð‘…2 were obtained for a component which has an independent strength and is exposed to two and three stresses, respectively. We used the generalized inverted Kumaraswamy distribution GIKD with unknown shape parameter as well as known shape and scale parameters. The parameters were estimated from the stress- strength models, while the reliabilities ð‘…1, ð‘…2 were estimated by three methods, namely the Maximum Likelihood, Least Square, and Regression.
A numerical simulation study a comparison between the three estimators by mean square error is performed. It is found that best estimator between
... Show MoreThe presented work shows a preliminary analytic method for estimation of load and pressure distributions on low speed wings with flow separation and wake rollup phenomena’s. A higher order vortex panel method is coupled with the numerical lifting line theory by means of iterative procedure including models of separation and wake rollup. The computer programs are written in FORTRAN which are stable and efficient.
The capability of the present method is investigated through a number of test cases with different types of wing sections (NACA 0012 and GA(W)-1) for different aspect ratios and angles of attack, the results include the lift and drag curves, lift and pressure distributions along the wing s
... Show MoreIn this paper, we present a comparison of double informative priors which are assumed for the parameter of inverted exponential distribution.To estimate the parameter of inverted exponential distribution by using Bayes estimation ,will be used two different kind of information in the Bayes estimation; two different priors have been selected for the parameter of inverted exponential distribution. Also assumed Chi-squared - Gamma distribution, Chi-squared - Erlang distribution, and- Gamma- Erlang distribution as double priors. The results are the derivations of these estimators under the squared error loss function with three different double priors.
Additionally Maximum likelihood estimation method
... Show MoreTrimmed Linear moments (TL-moments) are natural generalization of L-moments that do not require the mean of the underlying distribution to exist. It is known that the sample TL-moments is unbiased estimators to corresponding population TL-moment. Since different choices for the amount of trimming give different values of the estimators it is important to choose the estimator that has minimum mean squares error than others. Therefore, we derive an optimal choice for the amount of trimming from known distributions based on the minimum errors between the estimators. Moreover, we study simulation-based approach to choose an optimal amount of trimming and maximum like hood method by computing the estimators and mean squares error for range of
... Show MoreIn this paper, some estimators of the unknown shape parameter and reliability function of Basic Gompertz distribution (BGD) have been obtained, such as MLE, UMVUE, and MINMSE, in addition to estimating Bayesian estimators under Scale invariant squared error loss function assuming informative prior represented by Gamma distribution and non-informative prior by using Jefferys prior. Using Monte Carlo simulation method, these estimators of the shape parameter and R(t), have been compared based on mean squared errors and integrated mean squared, respectively
The Weibull distribution is considered one of the Type-I Generalized Extreme Value (GEV) distribution, and it plays a crucial role in modeling extreme events in various fields, such as hydrology, finance, and environmental sciences. Bayesian methods play a strong, decisive role in estimating the parameters of the GEV distribution due to their ability to incorporate prior knowledge and handle small sample sizes effectively. In this research, we compare several shrinkage Bayesian estimation methods based on the squared error and the linear exponential loss functions. They were adopted and compared by the Monte Carlo simulation method. The performance of these methods is assessed based on their accuracy and computational efficiency in estimati
... Show More