Background: Esthetic treatment is the options of patient seeking orthodontic treatment. Therefore this study was conducted to measure the concentration of Aluminum, Nickel, Chromium and Iron ions released from combination of monocrysralline brackets with different arch wires immersed in artificial saliva at different duration, to evaluate the corrosion point on different parts of the orthodontic appliances before and after immersion in artificial saliva, and to evaluate the corrosion potential of each group of the orthodontic appliances. Material and methods: Eighty orthodontic sets prepared. Each set represents half fixed orthodontic appliance, from the central incisor to the first molar, for the maxillary arch, each set consisted of molar band, five brackets, half arch wire and ligature elastic.These sets are divided into two groups: Group A: with monocrystalline brackets divided into five subgroups (each subgroup has ten sets), but differ in arch wires, as numbered stainless steel, nickel-titanium, thermally activated, coated stainless steel and coated nickel-titanium arch wires respectively. Group B: with stainless steel brackets divided into three subgroups (also each subgroup has ten sets), but differ in arch wires, as numberedstainless steel, nickel-titanium, and thermally activated arch wires respectively. Used optical microscope to check the corrosion points, and used potentiostat techniques to indicate corrosion rate and tendency. Results: The greatest concentration of Aluminum and nickel ions release during the 1st week in group A, then sharply decreased in the 2nd week. The release of chromium ion released increase with increase intervals, while iron ion released decrease with increase time. Both nickel and chromium ions increase with increase intervals in group B,while iron increase to the maximum at 3rd weeks, then began to degrease. Optical microscope displayed pitting, crevices, and intergranular corrosion. Potentiostat techniques indicated that increase corrosion when used stainless steel and coated nickel titanium than others arch wires with group A, while corrosion increase with nickel titanium than stainless steel arch wires with group B. Conclusions: Non-significant difference in the total nickel, chromium and iron release in group B. Aluminum and iron increase in A4 and A5, while nickel and chromium increase in A1 and A2.The total released amounts of metals ions in both groups were less than the amounts of daily intake.
In this work a model of a source generating truly random quadrature phase shift keying (QPSK) signal constellation required for quantum key distribution (QKD) system based on BB84 protocol using phase coding is implemented by using the software package OPTISYSTEM9. The randomness of the sequence generated is achieved by building an optical setup based on a weak laser source, beam splitters and single-photon avalanche photodiodes operating in Geiger mode. The random string obtained from the optical setup is used to generate the quadrature phase shift keying signal constellation required for phase coding in quantum key distribution system based on BB84 protocol with a bit rate of 2GHz/s.
Time-domain spectral matching commonly used to define seismic inputs to dynamic analysis in terms of acceleration time history compatible with a specific target response spectrum is used in this study to investigate the second-order geometric effect of P-delta on the seismic response of base-isolated high-rise buildings. A synthetic time series is generated by adjusting reference time series that consist of available readings from a past earthquake of the 1940 El Centro earthquake adopted as an initial time series. The superstructure of a 20-story base isolated building is represented by a 3-D finite element model using ETABS software. The results of the base isolated building show that base isolation technique significantly reduces inter-s
... Show MoreThe objective of the current research is to find an optimum design of hybrid laminated moderate thick composite plates with static constraint. The stacking sequence and ply angle is required for optimization to achieve minimum deflection for hybrid laminated composite plates consist of glass and carbon long fibers reinforcements that impeded in epoxy matrix with known plates dimension and loading. The analysis of plate is by adopting the first-order shear deformation theory and using Navier's solution with Genetic Algorithm to approach the current objective. A program written with MATLAB to find best stacking sequence and ply angles that give minimum deflection, and the results comparing with ANSYS.
In this work, an efficient energy management (EEM) approach is proposed to merge IoT technology to enhance electric smart meters by working together to satisfy the best result of the electricity customer's consumption. This proposed system is called an integrated Internet of things for electrical smart meter (2IOT-ESM) architecture. The electric smart meter (ESM) is the first and most important technique used to measure the active power, current, and energy consumption for the house’s loads. At the same time, the effectiveness of this work includes equipping ESM with an additional storage capacity that ensures that the measurements are not lost in the event of a failure or sudden outage in WiFi network. Then then these
... Show MoreIn this research, annealed nanostructured ZnO catalyst water putrefaction system was built using sun light and different wavelength lasers as stimulating light sources to enhance photocatalytic degradation activity of methylene blue (MB) dye as a model based on interfacial charges transfer. The structural, crystallite size, morphological, particle size, optical properties and degradation ability of annealed nanostructured ZnO were characterized by X-Ray Diffraction (XRD), Atomic Force Microscopy (AFM) and UV-VIS Spectrometer, respectively. XRD results demonstrated a pure crystalline hexagonal wurtzite with crystalline size equal to 23 nm. From AFM results, the average particle size was 79.25nm. All MB samples and MB with annealed nanostr
... Show MoreThe simulation of passively Q-switching is four non – linear first order differential equations. The optimization of passively Q-switching simulation was carried out using the constrained Rosenbrock technique. The maximization option in this technique was utilized to the fourth equation as an objective function; the parameters, γa, γc and β as were dealt with as decision variables. A FORTRAN program was written to determine the optimum values of the decision variables through the simulation of the four coupled equations, for ruby laser Q–switched by Dy +2: CaF2.For different Dy +2:CaF2 molecules number, the values of decision variables was predicted using our written program. The relaxation time of Dy +2: CaF2, used with ruby was
... Show MoreThe high carbon dioxide emission levels due to the increased consumption of fossil fuels has led to various environmental problems. Efficient strategies for the capture and storage of greenhouse gases, such as carbon dioxide are crucial in reducing their concentrations in the environment. Considering this, herein, three novel heteroatom-doped porous-organic polymers (POPs) containing phosphate units were synthesized in high yields from the coupling reactions of phosphate esters and 1,4-diaminobenzene (three mole equivalents) in boiling ethanol using a simple, efficient, and general procedure. The structures and physicochemical properties of the synthesized POPs were established using various techniques. Field emission scanning elect
... Show MoreOwing to their cost-effectiveness and the natural abundance of magnesium, magnesium-ion batteries (MIBs) were introduced as encouraging alternatives to Lithium-ion batteries. Following the successful synthesis of carbon nano-tube, its B and N doped derivatives which were doped with B and N enjoyed the attention of researchers as novel anode materials (AM) for MIBs. Here, we investigated a BC2N nano-tube (BC2NNT) as an encouraging AM for MIBs. To have a deeper understanding of the electrochemical properties, cycling stability, specific capacity (SC) and the adsorption behavior of this nano-tube, first-principles density functional theory computations were performed. By performing NMR calculations, we identified two types of non-aromatic hexa
... Show More