Preferred Language
Articles
/
jbcd-3146
Assessment of salivary immunoglobulin A, interleu-kin-6 and C-reactive protein in chronic kidney dis-ease patients on hemodialysis and on conservative treatment
...Show More Authors

Background: Chronic kidney disease is a gradual loss of kidney function with diabetes and hypertension as the leading cause. Chronic kidney disease is one of these systemic diseases that can affect salivary contents. Aims: This study aimed to assess salivary immunoglobulin A, interleukin-6 and C- reactive protein in chronic kidney disease patients on hemodialysis and those on conservative treatment in comparison with control subjects. Materials and methods: Ninety subjects were included in this study divided into three groups: 30 patients with chronic kidney disease on hemodialysis for at least 6 months ago; 30 patients with chronic kidney disease on conservative treatment and 30 healthy control subjects. Secretory immunoglobulin A, interleukin-6 and C- reactive protein in saliva samples were measured by enzyme-linked immunosorbent assay ELISA. Results: No significant difference in salivary immunoglobulin A level among study groups was seen. A significant increase in salivary interleukin-6 and C- reactive protein in both chronic kidney disease patients on hemodialysis and those on conservative treatment compared to the control group. While, no significant salivary IL-6 and CRP differences were seen between both patient groups, on hemodialysis and conservative treatment. Conclusions: There was no significant difference among chronic kidney disease patients on hemodialysis, on conservative treatment and control healthy subjects regarding to salivary IgA while Salivary interleukin -6 and C- reactive protein was significantly higher in chronic kidney disease patients on hemodialysis and those on conservative treatment compared to healthy subjects.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jun 20 2021
Journal Name
Baghdad Science Journal
PDCNN: FRAMEWORK for Potato Diseases Classification Based on Feed Foreword Neural Network
...Show More Authors

         The economy is exceptionally reliant on agricultural productivity. Therefore, in domain of agriculture, plant infection discovery is a vital job because it gives promising advance towards the development of agricultural production. In this work, a framework for potato diseases classification based on feed foreword neural network is proposed. The objective of this work  is presenting a system that can detect and classify four kinds of potato tubers diseases; black dot, common scab, potato virus Y and early blight based on their images. The presented PDCNN framework comprises three levels: the pre-processing is first level, which is based on K-means clustering algorithm to detect the infected area from potato image. The s

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Tue Feb 28 2023
Journal Name
Applied System Innovation
Earthquake Hazard Mitigation for Uncertain Building Systems Based on Adaptive Synergetic Control
...Show More Authors

This study presents an adaptive control scheme based on synergetic control theory for suppressing the vibration of building structures due to earthquake. The control key for the proposed controller is based on a magneto-rheological (MR) damper, which supports the building. According to Lyapunov-based stability analysis, an adaptive synergetic control (ASC) strategy was established under variation of the stiffness and viscosity coefficients in the vibrated building. The control and adaptive laws of the ASC were developed to ensure the stability of the controlled structure. The proposed controller addresses the suppression problem of a single-degree-of-freedom (SDOF) building model, and an earthquake control scenario was conducted and simulat

... Show More
View Publication Preview PDF
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Sentiment Analysis on Roman Urdu Students’ Feedback Using Enhanced Word Embedding Technique
...Show More Authors

 

Students’ feedback is crucial for educational institutions to assess the performance of their teachers, most opinions are expressed in their native language, especially for people in south Asian regions. In Pakistan, people use Roman Urdu to express their reviews, and this applied in the education domain where students used Roman Urdu to express their feedback. It is very time-consuming and labor-intensive process to handle qualitative opinions manually. Additionally, it can be difficult to determine sentence semantics in a text that is written in a colloquial style like Roman Urdu. This study proposes an enhanced word embedding technique and investigates the neural word Embedding (Word2Vec and Glove) to determine which perfo

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Sun Sep 16 2018
Journal Name
British Journal Of Educational Technology
Group tagging: Using video tagging to facilitate reflection on small group activities
...Show More Authors

Collaborative learning in class‐based teaching presents a challenge for a tutor to ensure every group and individual student has the best learning experience. We present Group Tagging, a web application that supports reflection on collaborative, group‐based classroom activities. Group Tagging provides students with an opportunity to record important moments within the class‐based group work and enables reflection on and promotion of professional skills such as communication, collaboration and critical thinking. After class, students use the tagged clips to create short videos showcasing their group work activities, which can later be reviewed by the teacher. We report on a deployment of Group Tagging in an undergraduate Computing Scie

... Show More
View Publication
Scopus (5)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Tue Mar 31 2015
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Formation Evaluation for Nasiriyah Oil Field Based on The Non-Conventional Techniques
...Show More Authors

The unconventional techniques called “the quick look techniques”, have been developed to present well log data calculations, so that they may be scanned easily to identify the zones that warrant a more detailed analysis, these techniques have been generated by service companies at the well site which are among the useful, they provide the elements of information needed for making decisions quickly when time is of essence. The techniques used in this paper are:

  • Apparent resistivity Rwa
  • Rxo /Rt

   The above two methods had been used to evaluate Nasiriyah oil field formations (well-NS-3) to discover the hydrocarbon bearing formations. A compu

... Show More
View Publication Preview PDF
Publication Date
Sat Apr 01 2023
Journal Name
Journal Of Engineering
Proposed Face Detection Classification Model Based on Amazon Web Services Cloud (AWS)
...Show More Authors

One of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services th

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Sat Apr 01 2023
Journal Name
Baghdad Science Journal
Photonic Crystal Fiber Pollution Sensor Based on the Surface Plasmon Resonance Technology
...Show More Authors

Photonic Crystal Fiber (PCF) based on the Surface Plasmon Resonance (SPR) effect has been proposed to detect polluted water samples. The sensing characteristics are illustrated using the finite element method. The right hole of the right side of PCF core has been coated with chemically stable gold material to achieve the practical sensing approach. The performance parameter of the proposed sensor is investigated in terms of wavelength sensitivity, amplitude sensitivity, sensor resolution, and linearity of the resonant wavelength with the variation of refractive index of analyte. In the sensing range of 1.33 to 1.3624, maximum sensitivities of 1360.2 nm ∕ RIU and 184 RIU−1 are achieved with the high sensor resolutions of 7

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (10)
Scopus Crossref
Publication Date
Wed Sep 07 2022
Journal Name
2022 Iraqi International Conference On Communication And Information Technologies (iiccit)
Construct an Efficient DDoS Attack Detection System Based on RF-C4.5-GridSearchCV
...Show More Authors

View Publication
Scopus (2)
Crossref (2)
Scopus Crossref
Publication Date
Sat Apr 01 2023
Journal Name
Journal Of Engineering
Proposed Face Detection Classification Model Based on Amazon Web Services Cloud (AWS)
...Show More Authors

One of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services through our ca

... Show More
View Publication
Crossref (5)
Crossref
Publication Date
Fri Jun 01 2007
Journal Name
Journal Of Al-nahrain University Science
ON THE GREEDY RADIAL BASIS FUNCTION NEURAL NETWORKS FOR APPROXIMATION MULTIDIMENSIONAL FUNCTIONS
...Show More Authors

The aim of this paper is to approximate multidimensional functions by using the type of Feedforward neural networks (FFNNs) which is called Greedy radial basis function neural networks (GRBFNNs). Also, we introduce a modification to the greedy algorithm which is used to train the greedy radial basis function neural networks. An error bound are introduced in Sobolev space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result is published in [16]).

View Publication Preview PDF
Crossref (1)
Crossref