Background:SARS-CoV-2 infection has caused a global pandemic that continues to negatively impact human health. A large group of microbial domains including bacteria co-evolved and interacted in complex molecular pathogenesis along with SARS-CoV-2. Evidence suggests that periodontal disease bacteria are involved in COVID-19, and are associated with chronic inflammatory systemic diseases. This study was performed to investigate the association between bacterial loads of Porphyromonas gingivalis and pathogenesis of SARS-CoV-2 infection. Fifty patients with confirmed COVID-19 by reverse transcriptase-polymerase chain reaction, their age ranges between 20-76 years, and 35 healthy volunteers (matched accordingly with age and sex to the patients) participated in this case control study. Oral hygiene status was determined by the simplified oral hygiene index. Blood and saliva samples were obtained from patients and controls, Porphyromonas gingivalis quantification from extracted DNA of blood and saliva samples performed by means of real-time polymerase chain reaction. The present result revealed that the quantity of salivary Porphyromonas gingivalis was significantly higher (p=0.003) in the patients’ group than in the controls group, while there was no significant difference in the number of bacteria in the blood samples between the two groups. Moreover, the number of bacteria in severe cases was higher than that in moderate and mild with no significant differences, and there was a significant increase in the number of bacteria among patients with poor oral hygiene compared to patients with good oral hygiene. This study demonstrated that the high level of salivary Porphyromonas gingivalis in patients increases in number with disease severity, which may indicate that bacterial infections contribute to the spread of the disease.
<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol
... Show More<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol
... Show MoreIn this paper, a compartmental differential epidemic model of COVID-19 pandemic transmission is constructed and analyzed that accounts for the effects of media coverage. The model can be categorized into eight distinct divisions: susceptible individuals, exposed individuals, quarantine class, infected individuals, isolated class, infectious material in the environment, media coverage, and recovered individuals. The qualitative analysis of the model indicates that the disease-free equilibrium point is asymptotically stable when the basic reproduction number R0 is less than one. Conversely, the endemic equilibrium is globally asymptotically stable when R0 is bigger than one. In addition, a sensitivity analysis is conducted to determine which
... Show MoreNews headlines are key elements in spreading news. They are unique texts written in a special language which enables readers understand the overall nature and importance of the topic. However, this special language causes difficulty for readers in understanding the headline. To illuminate this difficulty, it is argued that a pragmatic analysis from a speech act theory perspective is a plausible tool for a headline analysis. The main objective of the study is to pragmatically analyze the most frequently employed types of speech acts in the news headlines covering COVID-19 in Aljazeera English website. To this end, Bach and Harnish's (1979) Taxonomy of Speech Acts has been adopted to analyze the data. Thirty headlines have been collected f
... Show MoreBackground: In December 2019, an episode of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARSCoV2) was reported in Wuhan, China and has spread around the world, increasing the number of contagions. Cytomegalovirus (CMV) and Epstein-Barr virus (EBV) are common herpesviruses that can cause persistent latent infections and affect the developing immune system.The study was conducted to explore the prevalence and reactivation of CMV and EBV antibodies in COVID-19 patients group in comparison to healthy group and to investigate the association between the presence of these viruses with each of severity of disease and oral hygiene. Materials and Methods: Eighty Five subjects were participated in this case control study (5
... Show More<p>Combating the COVID-19 epidemic has emerged as one of the most promising healthcare the world's challenges have ever seen. COVID-19 cases must be accurately and quickly diagnosed to receive proper medical treatment and limit the pandemic. Imaging approaches for chest radiography have been proven in order to be more successful in detecting coronavirus than the (RT-PCR) approach. Transfer knowledge is more suited to categorize patterns in medical pictures since the number of available medical images is limited. This paper illustrates a convolutional neural network (CNN) and recurrent neural network (RNN) hybrid architecture for the diagnosis of COVID-19 from chest X-rays. The deep transfer methods used were VGG19, DenseNet121
... Show MoreDrug consultation is an important part of pharmaceutical care. mobile phone call or text message can serve as an easy, effective, and implementable alternative to improving medication adherence and clinical outcomes by providing the information needed significantly for people with chronic illnesses like diabetes and hypertension particularly during pandemics like COVID-19 pandemic.