Background: Pain is one of the most reported side effects of orthodontic treatment despite the advanced technology in orthodontics. Many analgesics have been introduced to control orthodontic pain including acetaminophen and selective and nonselective nonsteroidal anti-inflammatory drugs. The great concern about these drugs is their adverse effect on rate of teeth movement. Aims: The purpose of this study was to evaluate and compare the effect of acetaminophen, ibuprofen and etoricoxib on pain perception and their influence on the rate of teeth movement during leveling and alignment stage. Methods: Forty patients were evenly and randomly distributed in a blinded way to one of four groups: placebo (starch capsules), acetaminophen 500mg thrice daily, ibuprofen 400mg thrice daily, and etoricoxib 60mg once daily. The drugs were given one hour before bonding and archwire placement and continued for three days. A visual analogue scale was used to express pain levels before and after archwire placement, on the first, second, third, and seventh day. Little’s irregularity index was measured before bonding and at every activation visit until the end of the alignment and leveling stage. Results: All three drugs showed a lower pain level than placebo at the bonding and first activation visits. Etoricoxib showed the least pain level among other drugs followed by ibuprofen. No statistically significant differences were found between the drug groups and the placebo at the second and third activation visits. No statistically significant differences were detected between the 4 experimental groups concerning the rate of teeth movement. Conclusions: The three drugs were only effective in controlling pain during the first two visits of orthodontic treatment; and etoricoxib 60mg/day was the best. All three drugs had no influence on rate of teeth movement when used in their least recommended dose.
Some coordination complexes of Co(??), Ni(??), Cu(??), Cd(??) and Hg(??) are reacted in ethanol with Schiff base ligand derived from of 2,4,6- trihydroxybenzophenone and 3-aminophenol using microwave irradiation and then reacted with metal salts in ethanol as a solvent in 1:2 ratio (metal: ligand). The ligand [H4L] is characterized by FTIR, UV-Vis, C.H.N, 1H-NMR,13C-NMR, and mass spectra. The metal complexes are characterized by atomic absorption, infrared spectra, electronic spectra, molar conductance, (C.H.N for Ni(??) complex) and magnetic moment measurements. These measurements indicate that the ligand coordinates with metal (??) ion in a tridentate manner through the nitrogen and oxygen atoms of the ligand, octahedral structures
... Show MoreSome coordination complexes of Co(ІІ), Ni(ІІ), Cu(ІІ), Cd(ІІ) and Hg(ІІ) are reacted in ethanol with Schiff base ligand derived from of 2,4,6- trihydroxybenzophenone and 3-aminophenol using microwave irradiation and then reacted with metal salts in ethanol as a solvent in 1:2 ratio (metal: ligand). The ligand [H4L] is characterized by FTIR, UV-Vis, C.H.N, 1H-NMR,13C-NMR, and mass spectra. The metal complexes are characterized by atomic absorption, infrared spectra, electronic spectra, molar conductance, (C.H.N for Ni(ІІ) complex) and magnetic moment measurements. These measurements indicate that the ligand coordinates with metal (ІІ) ion in a tridentate manner through the nitrogen and oxygen atoms of the ligand, octahed
... Show MoreSome coordination complexes of Co(??), Ni(??), Cu(??), Cd(??) and Hg(??) are reacted in ethanol with Schiff base ligand derived from of 2,4,6- trihydroxybenzophenone and 3-aminophenol using microwave irradiation and then reacted with metal salts in ethanol as a solvent in 1:2 ratio (metal: ligand). The ligand [H4L] is characterized by FTIR, UV-Vis, C.H.N, 1H-NMR,13C-NMR, and mass spectra. The metal complexes are characterized by atomic absorption, infrared spectra, electronic spectra, molar conductance, (C.H.N for Ni(??) complex) and magnetic moment measurements. These measurements indicate that the ligand coordinates with metal (??) ion in a tridentate manner through the nitrogen and oxygen atoms of the ligand, octahedral st
... Show MoreThe aim of this study is to identify the effect of enabling the effectiveness of the work of the audit committees in private commercial banks and to identify the extent of awareness of the importance of empowerment in the work of these committees, especially as it is known that these committees, especially the inspection committees that go to private banks and from various sources including committees of the Central Bank of Iraq Committees of the Securities Commission and finally committees of the external audit offices, through an analysis of the determinants of empowerment in the performance of the most important work of the audit committees, namely: supervising the process of preparing reports, supervising the system of intern
... Show MoreInterest in belowground plant growth is increasing, especially in relation to arguments that shallow‐rooted cultivars are efficient at exploiting soil phosphorus while deep‐rooted ones will access water at depth. However, methods for assessing roots in large numbers of plants are diverse and direct comparisons of methods are rare. Three methods for measuring root growth traits were evaluated for utility in discriminating rice cultivars: soil‐filled rhizotrons, hydroponics and soil‐filled pots whose bottom was sealed with a non‐woven fabric (a potential method for assessing root penetration ability). A set of 38 rice genotypes including the Oryza
Understanding energy metabolism and intracellular energy transmission requires knowledge of the function and structure of the mitochondria. Issues with mitochondrial morphology, structure, and function are the most prevalent symptoms. They can damage organs such as the heart, brain, and muscle due to a variety of factors, such as oxidative damage, incorrect metabolism of energy, or genetic conditions. The control of cell metabolism and physiology depends on functional connections between mitochondrial and biological surroundings. Therefore, it is essential to research mitochondria in situ or in vivo without isolating them from their surrounding biological environment. Finding and spotting abnormal alterations in mitochondria is the
... Show MoreThis paper presents the design and analysis of composite right left hand (CRLH) electromagnetic bandgap (EBG) structure. The proposed unit cell is consistent of a dielectric substrate with dimensions of 5×5×1 mm 3 made of FR4-Epoxy with εr = 4.4 underneath of a conductive patch with dimensions of 4.4×4.4mm 2 . The unit cell is structured to perform a negative permittivity (ε) and negative permeability (µ) in different bands. The proposed unit cell is developed to 5G systems in the sub-6GHz bands. In this work, a complete analysis of the unit cell in terms of Sparameters, constitutive parameters and refraction index are evaluated using HFSS simulation package based on Finite Element Method (FEM).