Background: The world is in front of two emerging problems being scarceness of virgin re-sources for bioactive materials and the gathering of waste production. Employment of the surplus waste in the mainstream production can resolve these problems. The current study aimed to prepare and characterize a natural composite CaO-SiO2 based bioactive material derived from naturally sustained raw materials. Then deposit this innovative novel bioactive coating composite materials overlying Yttria-stabilized tetragonal zirconia substrate. Mate-rials and method; Hen eggshell-derived calcium carbonate and rice husk-derived silica were extracted from natural resources to prepare the composite coating material. The manufac-tured powder was characterized via Fourier-transform infrared spectroscopy (FTIR), field emission scanning electron microscope (FESEM), X-ray fluorescence (XRF), X-ray diffraction (XRD) and particle size analyzer. The bioactive composite was deposited through radiofre-quency (Rf) reactive magnetron sputtering overlying disc-shaped samples with a dimension of 10 mm diameter were prepared from partially sintered Yttria-stabilized tetragonal zirconia polycrystal (Y-TZP). Results: The particle size of the rice husk-derived ranged between (480.4 – 606.1) nm with a mean particle diameter of 541 nm. The eggshell derived calcium carbonate powder presented a particle size between (266.4-336) nm and a mean particle diameter of 299.9 nm. The XRD data revealed the crystalline nature and phase composition of the natural prepared calcium carbonate powder and demonstrate the monocrystalline nature of natural SiO2. FTIR spectrometer showed the emergence of novel spectra separated from the two innovative components. XRF analysis revealed that 99.4% of the rice husk is SiO2 while eggshell-derived powder is mainly composed of calcium oxide. Fe-SEM images of the coated zirconia exhibited average thickness of the natural CaCO3/SiO2 coat layer may reach to12.84 µ. Conclusion: The prepared composite derived from natural resource waste is suitable to be utilized as a coating material for ceramic dental implants with promising biological and mechanical properties.
A novel Schiff base ligand (DBC) synthesized from 4-chlorobenzoic acid, along with its Cu (II) and Co (II) complexes, was prepared and characterized using FT-IR, 1H and 13C-NMR, UV-Vis spectroscopy, as well as magnetic and conductivity measurements. Based on this, a tetrahedral structure of [M(DBC)Cl2] was proposed for the complexes. Antioxidant activity of the compounds was assessed and compared to ascorbic acid, revealing that the copper complex exhibited superior antioxidant properties compared to the cobalt complex and the ligand. Furthermore, the antibiofilm potential of the copper and cobalt complexes was assessed against five clinically relevant bacterial species (P.aeruginosa, E.coli, K.pneumoniae, S.aureus and S.typhi) usin
... Show MoreThe mixed ligand complexes of Schiff base ligand (Z)-2-(((4-bromo-2-methylphenyl) imino) methyl)-4-methylphenol (L) with some metals ion (II); Mn(1), Co(2), Ni(3), Cu(4), Zn(5) Cd(6) and Hg(7) and 1,10-Phenanthroline (phen) were Synthesis and characterized by the mass and 1HNMR spectrometry (ligand Schiff base), the FTIR, UV-visible and the flame atomic absorption (A.A) spectrum, the C.H.N analysis and the chlorine content, in addition to measuring the magnetic sensitivity of the complexes. All the complexes had octahedral geometry. The bioactivity activity for compounds against; Rhizopodium, Staphylococcus aureus and Escherichia coli, the compounds showed different efficacy towards these microorganisms
Metal complexes of Mn(II), Co(II), Ni(II), Cu(II), Cd(II), Zn(II), Hg(II), Pd(II), and Pt(II) with Schiff base ligand (LH) derived from 2,5-dichloroaniline and 2-hydroxy-5-metheylbenzalaldehyde were synthesized and characterized using a variety of spectrophotometric techniques The findings of the spectroscopic analysis indicated that (LH) behaved as a binary coordinating agent to the metal ion by the N and O atoms, and the geometry shape of the complexes was octahedral, with the exception of the Pd and Pt complexes, which had a square planar geometry. Using the DPPH radical scavenging method, we investigated the antimicrobial activity of the compound against Staphylococcus aureus and Escherichia coli, as well as the antifungal activity of t
... Show MoreThe Schiff base (E)-2-(((2-(1H-benzo[d]imidazol-2-yl) phenyl) imino) methyl)-4-methylphenol (Lb) ligand with some metals(II) ion such as; Co, Cu, Cd, and Hg, were synthesis and characterized by the mass and 1 HNMR spectrometry for ligand Schiff base, the fourier-transform infrared spectroscop (FTIR), UV- visible and the flame atomic absorption (AA) spectrum, the CHN analysis, and the chlorine content, in addition to measuring the magnetic sensitivity of the complexes. All the complexes had octahedral geometry. The bioactivity activity for compounds against; Rhizopodium, Staphylococcus aureus, and Escherichia coli showed different efficacy towards these microorganisms
The organic compound imidazole has the chemical formula C3N2H4. Numerous significant biological compounds contain imidazole. The amino acid histidine is the most prevalent. The substituted imidazole derivatives have great potential for treating a variety of systemic fungi infections. Thiourea is an organosulfur compound with the formula SC(NH2)2. It is a reagent in organic synthesis. In this paper, some new imidazole and thiourea derivatives are synthesized, characterized, and studied for their biological activity. These new compounds were synthesized from the starting material terephthalic acid, which was transformed to corresponding ester [I] by the refluxing of diacid with methanol in the presence of H2SO4 as a catalyst, compound [I] con
... Show MoreMetoclopramide HCl (MTB) is a potent antiemetic drug used for the treatment of nausea and vomiting. Many trials were made to prepare a satisfactory MTB orodispersible tablet using direct compression method.Various super disintegrants were used in this study which are croscarmellose sodium (CCS), sodium starch glycolate (SSG) and crospovidone (CP). The latter was the best in terms of showing the fastest disintegration time in the mouth.Among the different diluents utilized, it was found that a combination of microcrystalline cellulose PH101 (MCC 101), mannitol, dicalcium phosphate dihydrate (DPD) and Glycine was the best in preparing MTB orodispersible tablet with fastest disintegration time in the mouth.The physical parameters of the pre
... Show MoreAbstract: The aim of this study was to evaluate the effect of bone density value in Hounsfield unit derived from cone beam computed tomography (CBCT), and implant dimensions in relation to implant stability parameters namely the resonance frequency analysis and the insertion torque (IT) value. It included 24 patients who received 42 dental implants (DI). The bone density of the planned implant site was preoperatively measured using cone beam computed tomography. The implant stability was measured using Osstell implant stability quotient (ISQ). The ISQ values were recorded immediately postoperatively and after 16 weeks. The IT value was categorized as 35 N/cm or > 35 N/cm. The mean (standard deviation) primary stability was 79.58 (5.27) ISQ,
... Show MoreRheumatoid arthritis (RA) is a chronic inflammatory disease associated with decreased antioxidant state .This study aim to investigate the status of oxidant/antioxidant in a sample of Iraqi patients with RA and the role of peroxynitrite and its natural scavenger uric acid in them .This case-controlled study was conducted at Baghdad teaching hospital /Baghdad from December 2010-May 2011 . Twenty-five patients with mean age 39 years and 25 apparently healthy subject as controls with mean age 29 years were included in the study .Investigations include estimation of serum levels of nitric oxide (NO) ,peroxynitrite (PN) , malondialdehyde (MDA) , and uric acid (UA) .Serum PN levels were significantly elevated in RA patients a
... Show MoreThe cost-effective removal of heavy metal ions represents a significant challenge in environmental science. In this study, we developed a straightforward and efficient reusable adsorbent by amalgamating chitosan and vermiculite (forming the CSVT composite), and comprehensively investigated its selective adsorption mechanism. Different techniques, such as Fourier-transform infrared spectroscopy (FTIR), zeta potential analysis, scanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer, Emmett, Teller (BET) analysis were employed for this purpose. The prepared CSVT composite exhibited a larger surface area and higher mesoporosity increasing from 1.9 to 17.24 m2/g compared to pristine chitosan. The adsorption capabilities of the
... Show More