Background: To assess the alveolar bone crest level (ABCL) by Cone Beam Computed To-mography (CBCT) and to investigate several variables as predictors for the height of the alveolar bone in adolescents. Materials and methods: Age, sex, and ethnic groups were rec-orded for each patient. CBCT images were used to obtain measurements of the interproximal alveolar bone level from the cementoenamel junction (CEJ) to the alveolar crest. The highest measurement in each sextant was recorded along with any presence of a vertical bone defect or calculus. Results: Total of 720 measurements were recorded for 120 subjects. No vertical bony defects or calculus were observed radiographically. Statistically significant (P< 0.05) differences were observed between ABCL measurements of males as compared to females, posterior teeth compared to anterior teeth and maxillary sextants in comparison to man-dibular ones. Additionally, value of ABCL significantly increased in relation to sex (r=0.309), maxillary posterior (r=0.509) and mandibular posterior sextants (r=0.506). Linear regression analysis indicated that the latter variables can predict the height of marginal bone, other independent variables were considered redundant. Conclusions: There was a low-profile of marginal bone loss among adolescents. Male sex, posterior teeth, and maxillary teeth have higher tendency for decreasing alveolar bone height.
Abstract: This study aims to investigate the backscattering electron coefficient for SixGe1-x/Si heterostructure sample as a function of primary electron beam energy (0.25-20 keV) and Ge concentration in the alloy. The results obtained have several characteristics that are as follows: the first one is that the intensity of the backscattered signal above the alloy is mainly related to the average atomic number of the SixGe1-x alloy. The second feature is that the backscattering electron coefficient line scan shows a constant value above each layer at low primary electron energies below 5 keV. However, at 5 keV and above, a peak and a dip appeared on the line scan above Si-Ge alloy and Si, respectively, close to the interfacing line
... Show MoreGroundwater modelling is particularly challenging in arid regions where limited water recharge is available. A fault zone will add a significant challenge to the modelling process. The Western Desert in Iraq has been chosen to implement the modelling concept and calculate the model sensitivity to the changes in aquifer hydraulic properties and calibration by researching 102 observations and irrigation wells. MODFLOW-NWT, which is a Newtonian formulation for MODFLOW-2005 approaches, have been used in this study. Further, the simulation run has been implemented using the Upstream-Weighting package (UPW) to treat the dry cells. The results show sensitivity to the change of the Kx value for the major groundwater discharge flow. Only abo
... Show MoreDBNRAAK Mohammed, International Journal of Research in Social Sciences and Humanities, 2020
The electrical properties of the AlNiCo thin films with thickness (1000oA) deposited on glass substrates using Ion – Beam sputtering (IBS) technique under vacuum <10-6 torr have been studied . Also it studied the effect of annealing temperature from this films , It is found that the effective energy decrease with increase of temperature and the conductivity decrease with increase temperature 323oK but after this degree the conductivity increasing .
Improving in assembling technology has provided machines of higher evaluation with better resistances and managed behavior. This machinery led to remarkably higher dynamic forces and therefore higher stresses. In this paper, a dynamic investigation of rectangular machine diesel and gas engines foundation at the top surface of one-layer dry sand with various states (i.e., loose, medium and dense) was carried out. The dynamic investigation is performed numerically by utilizing limited component programming, PLAXIS 3D. The soil is accepted as flexible totally plastic material submits to Mohr-Coulomb yield basis. A harmonic load is applied at the foundation with amplitude of 10 kPa at a frequency of (10, 15 and 20) HZ and se
... Show MoreA fixed firefighting system is a key component of fire safeguarding and reducing fire danger. It is installed as a permanent component in a structure to protect the entire or a portion of the building and its contents. The study aims to review the previous studies that deal with the evaluation of fire safety measures and their use in resolving problems associated with fire threats in buildings. For this reason, a number of previous studies in this field were reviewed compared with the NFPA code. The findings revealed that regulatory developments over the last several decades had created an atmosphere conducive to innovation. This has resulted in a growth in the number of fixed firefighting system types now obtainable. Th
... Show MoreThe purpose of this study is to demonstrate a simple high sensitivity vapor sensor for propanol ((CH3)2CHOH). A free space gap was employed in two arms of a Mach-Zehnder interferometer to serve as the sensing mechanism by adding propanol volume (0.2, 0.4, 0.6, 0.8, and 1) ml and to set the phase reference with a physical spacing of (0.5, 1, 1.5, and 2) mm. The propagation constant of transmitted light in the Mach-Zehnder interferometer’s gap changes due to the small variation in the refractive index inside sensing arm that will further shift the optical phase of the signal. Experimental results indicated that the highest sensitivity of propanol was about 0.0275 nm/ml in different liquid volume while highest phase shift was 0.182×103 i
... Show MoreThe performance of a vapor compression refrigeration system (VCRS)-based residential air conditioner operating in a high-ambient temperature (HAT) country was investigated using six zero-ODP (ozone depletion potential) refrigerants as replacements to R22. The non-flammable alternative refrigerants considered in the present research were R134a, R404A, R407C, R410A, R448A, and R507A. Using the basic conservation laws, the VCRS was modeled during steady-state operation and solved using engineering equation solver (EES) software. Coefficient of performance (COP), pressures and temperatures at compressor suction and discharge, Global Warming Potential (GWP), critical pressure and temperature, compressor
This paper aimed to investigate the effect of the height-to-length ratio of unreinforced masonry (URM) walls when loaded by a vertical load. The finite element (FE) method was implemented for modeling and analysis of URM wall. In this paper, ABAQUS, FE software with implicit solver was used to model and analysis URM walls subjected to a vertical load. In order to ensure the validity of Detailed Micro Model (DMM) in predicting the behavior of URM walls under vertical load, the results of the proposed model are compared with experimental results. Load-displacement relationship of the proposed numerical model is found of a good agreement with that of the published experimental results. Evidence shows that load-displacement curve obtained fro
... Show More