Background: The Titanium and its alloys are suitable for dental implant and medical applications. Biocompatibility of the materials is a major factor in determining the success of the implant and has a great impact on their rate of osseointegration. The aim of this study was to evaluate the biocompatibility and cytotoxicity of Ti2AlC in comparison to CPTi & Ti6Al7Nb in rabbits. Materials and Methods: 10 male New Zealand White rabbits, weighing (2-2.5 kg), aged (10-12 months) were used in this study. Cylindrical implants were prepared from the study materials (CPTi, Ti6Al7Nb and Ti2AlC) with (8mm) height and (3mm) diameter for the evaluation of tissue response and disc specimens were prepared with (6 mm) diameter and (2 mm) thickness for evaluation of cytotoxicity MTT test. A histological study was performed at 2 & 6 weeks post- surgical implant insertion. Results: Histological findings show that Ti2AlC has enhanced proliferation of osteo-progenitor cell and reported mature bone formation at 6 weeks. Moreover, Ti2AlC has recorded a higher percentage for viable cells by MTT test in comparison to CPTi and Ti6Al7Nb. Conclusion: The new Ti2AlC dental implant is considered biocompatible and has showed a better bone formation than the CPTi and Ti6Al7Nb materials at 2 & 6 weeks.
Background: Multidrug-resistant (MDR) enterococci have become a major problem in recent times and have been reported increasingly around the world. Lytic phages infect bacteria leading to rapid host death with limited risk of phage transduction, underlining the increasing interest in potential phage therapy in the future. Objective (s): The aim of this study is to use phage therapy as alternative approach for treatment of Enterococcus faecalis infections that recorded as MDR in Iraq to tackle this problem. Materials and Methods: Thirty E. faecalis isolates were collected from patients with different infectious diseases such as urinary tract infection (UTI), diabetic foot, septicemia, and wound infections. The isolation of specific l
... Show MoreAcademic chemical laboratories (ACL) are considered public places the employees come in contact with a variety of pollutants. The aim of the current study was to detect heavy metals levels in the indoor air of ACL in two universities in Baghdad city and assess their levels in the academic employees’ scalp hair as biomarkers. Air samples inside ACL were collected to detect Fe, Cd, Zn, Pb and Cu. Scalp hair samples were collected from 40 adult chemical laboratory employees aged 30-60 years, who worked 5 days/week for 6 hours a day. Personal information relating to employees such as age, duration of exposure, smoking habit and sex, was collected as a questionnaire. The results of this study concluded that academic laboratory employ
... Show MoreOur recent work displays the successful preparation of Schiff_bases that carried out between hexane-2,5-dione and 2 moles of (Z)-3-hydrazineylideneindolin-2-one forming in Schiff-bases-(L), Which in turn allowed combining with each of the next metal ions: (M2+) = Ni, Mn, Zn, Cu and Co forming complexes_ in high stability. The formation of resulting Schiff_ bases (L) is detected spectrally using LC_Mss which gave approximately matching results with theoretical incomes, 1HNMR proves the founding of doublet signal of (2H) for 2NH, FTIR indicates the occurrence of two interfered imine bands and UV-VIS mean is also indecates the formation of ligand. On the other hand, complexes-based-Schiff were characterized using the s
... Show MoreWe studied the effect of certain environmental conditions for removing heavy metal elements from contaminated aqueous solutions (Cd, Cu, Pb, Fe, Zn, Ni, Cr) using the bacterium Bacillus subtilis to appoint the optimal conditions for removal ,The best optimum temperature range for two isolate was 30-35○C while the hydrogen number for the maximum mineral removal range was 6-7. The best primary mineral removal was 100 mg/L, while the maximum removal for all minerals was obtained after 6 hrs of Cu element time and the maximum removal efficiency was obtained after 24 hrs of Cu element. The results have proved that the best aeration for maximum removal was obtained at rotation speed of 150 rpm/minute. Inoculums of 5ml/100ml which contained 1
... Show MoreMultiplicative inverse in GF (2 m ) is a complex step in some important application such as Elliptic Curve Cryptography (ECC) and other applications. It operates by multiplying and squaring operation depending on the number of bits (m) in the field GF (2 m ). In this paper, a fast method is suggested to find inversion in GF (2 m ) using FPGA by reducing the number of multiplication operations in the Fermat's Theorem and transferring the squaring into a fast method to find exponentiation to (2 k ). In the proposed algorithm, the multiplicative inverse in GF(2 m ) is achieved by number of multiplications depending on log 2 (m) and each exponentiation is operates in a single clock cycle by generating a reduction matrix for high power of two ex
... Show MoreThe study discussed here deals with the isolation of Aspergillus niger from palm dates, the formal and the most famous fruit in Iraq, to test and qualify this fungus isolate for its ability to produce citric acid. Submerged fermentation technique was used in the fermentation process. A.niger isolated from “Zahdi” Palme dates was used in the study of the fermentation kinetics to get the production efficiency of citric acid. Kinetics of CA production via fermentation by A. niger S11 was evaluated within 432 h fermentation time and under submerged conditions of 11% (w/v) sucrose, 5% (v/v) inoculum size, pH 4, 30 °C and 150 rpm. The maximum citric acid produced was (37.116 g/l). Kine