Background: Morphology of the root canal system is divergent and unpredictable, and rather linked to clinical complications, which directly affect the treatment outcome. This objective necessitates continuous informative update of the effective clinical and laboratory methods for identifying this anatomy, and classification systems suitable for communication and interpretation in different situations. Data: Only electronic published papers were searched within this review. Sources: “PubMed” website was the only source used to search for data by using the following keywords "root", "canal", "morphology", "classification". Study selection: 153 most relevant papers to the topic were selected, especially the original articles and review papers, from 1970 till the 28th of July 2021. Conclusions: This review divided the root canal analysis methods into two approaches; clinical and in vitro techniques. The latter has shown more precise non-subjective readings, on the other hand; the clinical methods provide direct chair side diagnosis for the clinical cases. The classification systems reviewed in the present study, started with the oldest trials that simply presented the root canal systems, according to the degree of angulation, or by coded Latin numbers or English letters. Then, the most recent systems were also presented that were persisted with continuous editions up to date. These new systems could briefly describe the root and root canal’s internal and external details in a small formulation, without confusion and in an easily communicated manner, highly recommended specially for students, teachers, and researchers
Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show More<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol
... Show MoreGraph is a tool that can be used to simplify and solve network problems. Domination is a typical network problem that graph theory is well suited for. A subset of nodes in any network is called dominating if every node is contained in this subset, or is connected to a node in it via an edge. Because of the importance of domination in different areas, variant types of domination have been introduced according to the purpose they are used for. In this paper, two domination parameters the first is the restrained and the second is secure domination have been chosn. The secure domination, and some types of restrained domination in one type of trees is called complete ary tree are determined.
Autism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D
... Show MoreToday’s modern medical imaging research faces the challenge of detecting brain tumor through Magnetic Resonance Images (MRI). Normally, to produce images of soft tissue of human body, MRI images are used by experts. It is used for analysis of human organs to replace surgery. For brain tumor detection, image segmentation is required. For this purpose, the brain is partitioned into two distinct regions. This is considered to be one of the most important but difficult part of the process of detecting brain tumor. Hence, it is highly necessary that segmentation of the MRI images must be done accurately before asking the computer to do the exact diagnosis. Earlier, a variety of algorithms were developed for segmentation of MRI images by usin
... Show MoreDeveloping a new adaptive satellite images classification technique, based on a new way of merging between regression line of best fit and new empirical conditions methods. They are supervised methods to recognize different land cover types on Al habbinya region. These methods should be stand on physical ground that represents the reflection of land surface features. The first method has separated the arid lands and plants. Empirical thresholds of different TM combination bands; TM3, TM4, and TM5 were studied in the second method, to detect and separate water regions (shallow, bottomless, and very bottomless). The Optimum Index Factor (OIF) is computed for these combination bands, which realized
... Show MoreThe fetal heart rate (FHR) signal processing based on Artificial Neural Networks (ANN),Fuzzy Logic (FL) and frequency domain Discrete Wavelet Transform(DWT) were analysis in order to perform automatic analysis using personal computers. Cardiotocography (CTG) is a primary biophysical method of fetal monitoring. The assessment of the printed CTG traces was based on the visual analysis of patterns that describing the variability of fetal heart rate signal. Fetal heart rate data of pregnant women with pregnancy between 38 and 40 weeks of gestation were studied. The first stage in the system was to convert the cardiotocograghy (CTG) tracing in to digital series so that the system can be analyzed ,while the second stage ,the FHR time series was t
... Show MoreAudio classification is the process to classify different audio types according to contents. It is implemented in a large variety of real world problems, all classification applications allowed the target subjects to be viewed as a specific type of audio and hence, there is a variety in the audio types and every type has to be treatedcarefully according to its significant properties.Feature extraction is an important process for audio classification. This workintroduces several sets of features according to the type, two types of audio (datasets) were studied. Two different features sets are proposed: (i) firstorder gradient feature vector, and (ii) Local roughness feature vector, the experimentsshowed that the results are competitive to
... Show MoreIn this paper we generalize some of the results due to Bell and Mason on a near-ring N admitting a derivation D , and we will show that the body of evidence on prime near-rings with derivations have the behavior of the ring. Our purpose in this work is to explore further this ring like behavior. Also, we show that under appropriate additional hypothesis a near-ring must be a commutative ring.
We propose a new method for detecting the abnormality in cerebral tissues present within Magnetic Resonance Images (MRI). Present classifier is comprised of cerebral tissue extraction, image division into angular and distance span vectors, acquirement of four features for each portion and classification to ascertain the abnormality location. The threshold value and region of interest are discerned using operator input and Otsu algorithm. Novel brain slices image division is introduced via angular and distance span vectors of sizes 24˚ with 15 pixels. Rotation invariance of the angular span vector is determined. An automatic image categorization into normal and abnormal brain tissues is performed using Support Vector Machine (SVM). St
... Show More