Background: Fracture of different types of acrylic denture base is a common problem associated with dental prosthesis. Studies suggested that the repair strength may be improved by several means including surface treatment with chemical agents. The aim of the study was to evaluate the effect of surface treatment with acrybond-bonding agent and monomer on fractured denture base in respect to transverse, tensile and shear bond strength and evaluation of the mode of failure by light microscope. Materials and methods: Two hundred seventy specimens were prepared and divided into 3 groups according to the material used (regular conventional, rapid simplified and high impact) heat cure acrylic. The specimen in each groups were prepared specifically according to testing (tensile, transverse and shear bond strength). All the specimens were stored in 37°C for 28days before fracture then the specimens in each test were divided into 3 groups according to surface treatment (control-without surface treatment, monomer(MMA) group and acrybond (MMA with acetone ))group. The specimens repaired with cold cure acrylic using Ivomet; then stored in distill water at 37°C for 2days before testing. GEFRA universal testing machine was used and final load at fracture was recorded. Results: monomer and acrybond group exhibited higher bond strength than control group. Conclusion: the type of denture base affect the value of bond strength and the use of monomer or acrybond resulted in higher bond strength than untreated surface.
Background: The mechanical properties of 3D-printed denture base resins are crucial factors for determining the quality and performance of dentures inside a patient’s mouth. Tensile strength and diametral compressive strength are two properties that could play significant roles in assessing the suitability of a material. Although they measure different aspects of material behavior, a conceptual link exists between them in terms of overall material strength and resilience. Aim: This study aims to investigate the correlation between tensile strength and diametral compressive strength after incorporating 2% ZrO2 nanoparticles (NPs) by weight into 3D-printed denture base resin. Methods: A total of 40 specimens (20 dumbbell-shaped and
... Show MoreThe objective of this experiment was to determine the effects of dietary supplementation with different fat sources on blood parameters of Japanese quail (Coturnix coturnix japonica). Eighty four 7-week old laying quail were randomly assigned to 4 treatment groups (21 birds per group) with 3 replicates for each treatment group and fed for three months on a commercial diet supplemented with 3% of either sunflower oil (T1), flax oil (T2), corn oil (T3) or fish oil (T4). The birds received water and feed ad libitum during the experiment. During the last month of experiment blood samples were collected fortnightly from each bird. The first blood samples collection was used to determine fresh blood parameters, while the second blood samples coll
... Show MoreBackground: Poly (methyl methacrylate) has several disadvantages (poor mechanical properties) like impact and transverse strength. In order to overcome these disadvantages, several methods were used to strengthen the acrylic resin by using different fibers or fillers. This study was conducted to evaluate the effect of Plasma treatment of the fiber on mechanical properties Poly (methyl methacrylate) denture base material. Materials and methods: Specimens were prepared from poly methyl metha acrylic (PMMA) divided according to present of fiber into 4 groups (first group without fiber as control group, second group with Plasma treated polyester fibers, third group with Plasma treated polyamide fibers and fourth group Plasma treated combination
... Show MoreJet grouting is one of the most widely applied soil improvement techniques. It is suitable for most geotechnical problems, including improving bearing capacity, decreasing settlement, forming seals, and stabilizing slopes. One of the difficulties faced by designers is determining the strength and geometry of elements created using this method. Jet grouted soil-cement columns in soil are a complicated issue because they are dependent on a number of parameters such as soil type, grout and water flow rate, rotation and lifting speed of monitor, nozzle jetting force, and water to cement ratio of slurry. This paper discusses the effect of the water-cement ratio on the physical and mechanical characteristics of soilcrete. In t
... Show MoreThe qualitative concept of training experienced athletes is not limited to strength training alone, but extends to general physical conditioning and, ultimately, to special strength training during the specific phases of athletic preparation, depending on the type of sport practiced. Since athletic training should not follow a single, monotonous pattern, the researchers adopted modern Boot camp exercises to develop special strength and biomechanical variables for female triple jump athletes. The study aimed to design Boot camp exercises specifically to enhance special strength and certain biomechanical indicators in young female triple jump athletes, and to identify the impact of these exercises on their performance. The researchers
... Show MoreBack ground: This in vitro study was carried out to investigate the effect of post space regions (coronal, middle and apical), Time and the mode of polymerization (dual, self-cured) of the cements used on the bond strength between translucent fiber post and root dentin by using push-out test. Materials and Methods: Forty eight extracted mandibular first premolars (single root) were instrumented with ProTaper Universal system files (for hand use) and obturated with gutta percha for ProTaper and AH26® root canal sealer following the manufacturer instructions, after 24 hours post space was prepared using FRC postec® plus drills no.3 creating 8 mm depth post space. The prepared samples were randomly divided into two main groups (24 samples ea
... Show MoreBackground: The microhardness of a composite resin is a vital parameter that is used to determine its clinical behavior. Measuring the microhardness of a composite resin has been used as an indirect method to assess its degree of conversion and extent of polymerization. The purpose of this in vitro study was to evaluate the effect of three curing distances (0, 2, and 4 mm) on the microhardness of the top and bottom surfaces of three types of flowable bulk-fill composite resins (smart dentin replacement, Opus bulk fill flow, and Tetric N). Material and method: Sixty-three specimens from the three types of composite resins (n=21) were fabricated using Teflon mold with a 4mm depth and a 5 mm internal diameter and cured for 20 seconds. For e
... Show More