Background: The main drawback of soft lining materials was that they debonded from the denture base after a certain period of usage. Therefore, the purpose of this research was to determine the impact of oxygen and argon plasma treatment on the shear bonding strength of soft liners to two different kinds of denture base materials: conventional acrylic resin and high impact acrylic resin. Materials and Methods: Heat cure conventional and high impact acrylic blocks (40 for each group) were prepared. A soft liner connected the final test specimen of two blocks of each acrylic material. Shear bond strength (SBS) was assessed using universal testing machine. Additional blocks were also prepared for analyzing Vickers microhardness, contact angle, FTIR and AFM. The results were statistically analyzed using paired-sample T-test and independent-samples T-test (α=0.05). Results: The results showed a highly significant increase in SBS following plasma treatment with the highest mean value observed in plasma treated high impact acrylic specimen. Along with a significant rise in wettability, while microhardness was preserved. Conclusion: In conclusion, oxygen and argon plasma treatment was significantly effective in enhancing the SBS between soft liner and acrylic materials.
Background: Recently, Poly propylene fibers with and without plasma treatment have been used to reinforce heat cure denture base acrylic but, so far some of properties like tensile strength , wettability and wear resistance not evaluated yet, the aim of the study is to clarify the influence of incorporation of treated and untreated fibers on these properties. Materials and methods: Twenty one specimens were fabricated for every tested property(tensile strength, wear resistance and wettability) that classified into three groups(control, untreated poly propylene fibers reinforced specimens and Oxygen plasma treated group)and for each test sevens amples were used(n=7). Tensile strength was tested using Instron universal testing machine, wear
... Show MoreThis work aims to investigate the tensile and compression strengths of heat- cured acrylic resin denture base material by adding styrene-butadiene (S- B) to polymethyl methacrylate (PMMA). The most well- known issue in prosthodontic practice is fracture of a denture base. All samples were a blend of (90%, 80%) PMMA and (10%, 20%) S- B powder melted in Oxolane (Tetra hydro furan). These samples were chopped down into specimens of dimensions 100x10x2.5mm to carry out the requirements of tensile tests. The compression strength test specimens were shaped into a cylinder with dimensions of 12.7mm in diameter and 20mm in length. The experimental results show a significant increase in both tensile and compression strengths when compared to cont
... Show MoreBackground: Polymethyl methacrylate (PMMA) is the most commonly used material in denture fabrication. The material is far from ideal in fulfilling the mechanical requirement. The purpose of this study was to evaluate the effect of addition of 3% wt of treated (silanized) Titanium oxide Nano filler on some physical and mechanical properties of heat cured acrylic denture base material. Materials and methods: 100 specimens were constructed, 50 specimens were prepared from heat cure PMMA without additives (control) and 50 specimens were prepared from heat cure PMMA with the addition of TiO2 Nano fillers. Each group was divided into 5 sub groups according to the test performed which was mixed by probe ultra-sonication machine. Results: A highly
... Show MoreBackground: Denture relining is the process of resurfacing of the tissue side of the ill fitting denture, the bond strength at the relining-denture base interface is most important for denture durability.The aim of present study was to evaluate the shear bond strength between the thermosens as relining material and different denture base materials that bonded by thermo fusing liquid. As this corrective procedureis the common chair side procedure in the dental clinic. Material and method: Sixty samples were prepared and divided into three main groups according to the type of denture base materials.Group (A) referred to the heat cure acrylic samples which consisted of 20 samples. Group (B) referred to the high impact acrylic samples which con
... Show MoreBackground: The PMMA polymer denture base materials are low mechanical properties, adaptation of the denture base to underlying tissue is important for retention and stability of denture. The aim of the study was toevaluate the effect of mixtureZrO2-Al2O3 nanoparticles on impact strength, transverse strength, hardness, roughness, denture base adaptation of heat cured acrylic resin denture base material. Materials and methods: One hundred (100) specimens were prepared, the specimens were divided into five groups (20 specimens to each) according to the test type, each group was subdivided in to two subgroups (control and experimental) each subgroup consist of 10 specimens, the experimental group included mixture of 2% (ZrO2-Al2O3ratio2:1) b
... Show MoreBackground: Fluoridated acrylic resin material can present more stable properties when compared with conventional one.The most widely used fluoride –containing substance added to dental resin materials is sodium fluoride (Naf). This study evaluated the effect of Naf in different concentration to the acrylic resin denture base material and its effect on tensile strength ,modules of elasticity with long –term water immersion (after 4 months immersion in de-ionized water) Materials and methods: Eighty specimens from dumbbells shaped metal pattern for tensile strength test were preparedaccording to ISO 527: 1993 plastic –Determination tensile properties ,in dimensions(60mm, 12mm, 3 ± 0.2mm) length, width and depth respec
... Show MoreThis research has studied the effect of addition glass fibers (woven and chopped)
and Zirconium oxide Nano-particles (ZrO2) with different weight percent to the
conventional poly (methyl methacrylate) (PMMA). The prepared Nano-crystalline
ZrO2 powder with particle size of about 95nm was syntheses directly by sol-gel
method. The gel dried at 100oC for 1 hour and annelid at 400oC for 3 hours.
The conventional acrylic resin prepared with 2:1 powder to liquid ratio to prepare
pure sample, composite samples prepared by reinforcing PMMA with woven or
chopped glass fiber (8, 12) wt.%, and reinforcing by (1,2,3) wt.% of prepared ZrO2
Nano-powder.
The structural tests include: (XRD, AFM, and FTIR). The crystallized phas
Objective(s): In the present study, glycerin is used as a substitute for tin-foil and cold mold seal (Alginate mould seal)
in the process of curing heat and cold-cure acrylic resin denture base against stone and plaster.
Methodology: 60 specimens were prepared from heat-cure acrylic resin and cold-cure acrylic resin denture base. The
study includes 12 groups of specimens depending on the type of processing, investment material and type of
separating medium that are used in curing process. Each group of them contains 5 specimens for each test.
Some of physical properties of the processed acrylic denture base that (water sorption and solubility) have been
compared with those processed using tin-foil and tin-foil substitut
Objective: One of the most important practical deficiencies of present denture base materials is fracture, therefore many
attempts have been made to reinforce of the repaired denture base resin. A desirable objective for this service is to obtain
optimum strength for repairs, which can be achieved by making available a good bond between original and repaired
materials.
Methodology: The present study was carried out to evaluate and compare the transverse strength of acrylic specimens
repaired by two different materials (hot-cure and cold-cure acrylic resin). A total of 50 specimens were prepared by hot
(40) repair: (10) by hot with retention bead, (10) by cold with retention bead and (10) repair by hot only, (10) repair
Soaking dentures with disinfection solutions is an effective way of keeping dentures in a healthy status; however, immersions in these solutions have a negative effect on the bond strength of denture base and denture teeth. The aim of this study was to evaluate the bond strength between denture acrylic teeth and heat-cured Poly (methyl methacrylate) denture base material (with and without nano silica) after disinfection with different chemical disinfectants for a simulated period of six months. One hundred specimens of maxillary central incisors attached to PMMA were divided into two groups; 50 specimens of PMMA without nano silica and 50 specimens of PMMA reinforced with 5 wt% of nano silica. Specimens of each group were immersed in five i
... Show More