Background: Dental stone casts come into contact with impression materials and becomes susceptible to cross contamination from saliva and blood. This study was done to evaluate the physical and mechanical properties of dental stone type IV after treatments with various disinfecting agents and regimes (methods). Materials and Methods: Type IV dental stone and different types of disinfecting agents were used and divided into seven groups: G1: dental stone without disinfection (control group), G2: dental stone mixed with silver nitrate powder 0.5% , G3: dental stone mixed with silver nitrate powder 1%, G4: dental stone mixed with copper sulfate powder 0.5%, G5: dental stone mixed with copper sulfate powder 1% ,G6: dental stone immersed in propanol 70% and G7: dental stone immersed in ethanol 70%.Setting time, linear setting expansion, surface detail reproduction, compressive strength of type IV dental stone as well as compatibility with auto mixing addition silicone impression material were evaluated. The statistical analysis were conducted by ANOVA test followed by LSD test (p<0.05), also chi square test was used. Results: The compressive strength, linear setting expansion, surface detail reproduction and compatibility of stone specimens was affected to a higher extent by mixing with silver nitrate powder 1%, copper sulfate powder 1% while treating the stone specimens with the disinfecting powders at low concentrations as well as immersion of stone specimens in either ethanol or propanol for 15 minutes produce less effect on the previous tested properties. Conclusion: Silver nitrate 0.5%, copper sulfate 0.5% powders as well as 15 minutes immersion in 70% ethanol or 70% propanol did not promote adverse alterations in most of evaluated properties of type IV dental stone.
Background: Polymer surfaces usually present problems in bonding and finishing due to their low hydrophilicity. The aim of this study is to investigate the effect of plasma treatment with the use of two types of gases (oxygen and argon) on surface roughness, and chemical surface properties of acrylic resin denture base polymer material. Materials and Methods: Three heat cured acrylic resin specimens of (2*8*30 mm) dimensions were prepared for each test carried out in this study. Two tests were conducted, surface roughness test and chemical surface analysis test. Results: Application of plasma treatment increased surface roughness for both oxygen and argon plasma treated acrylic resin specimen groups compared with control untreated group,
... Show MoreThe dielectric constant of most polymers is very low; the addition of TiO2 particles into the polymers provides an attractive and promising way to reach a high dielectric constant. Polymer-based materials with a high dielectric constant show great potential for energy storage applications. Four samples were prepared, one of them was polyurethane (PU) and the other were PU with different weight percent (wt %) of TiO2 (0.1, 0.2, 0.3) powder AFM test was used to distinguish the nanoparticles. The result shows that the most shape of these nanoparticles are spherical and the roughness average is 0.798 nm. The dielectric properties were measured for all samples before and after the exposure to the UV radiation. The result illustrates that the
... Show MoreThe response of floating stone columns of different lengths to diameter ratio (L/D = 0, 2, 4, 6, 8, and 10) ratios exposed to earthquake excitations is well modeled in this paper. Such stone column behavior is essential in the case of lateral displacement under an earthquake through the soft clay soil. ABAQUS software was used to simulate the behavior of stone columns in soft clayey soil using an axisymmetric finite element model. The behavior of stone column material has been modeled with a Drucker-Prager model. The soft soil material was modeled by the Mohr-Coulomb failure criterion assuming an elastic-perfectly plastic behavior. The floating stone columns were subjected to the El Centro earthquake, which had a magnitude of 7.1 an
... Show MoreMixedآ catechol- آ salicyladiminenate derivatives of antimony
|
(III) and tin (IV) of the general formula M(cate)L"]X, [where:M= Sb, X= آ 0; آ M=Sn, آ X= آ Cl; آ cate=catechol; آ n=l, آ L=aniline, آ n=2, آ L=mآ bromo-aniline, n=3, L=p-bromoaniline] were prepared by the reaction of equimolar amount of [(cate)MCln], [where n=l آ or 2] with Nآ arylsalicylaldimines HOC6H4CH=NC6Hs (HL1آ , HOC6H4CH= NC6H4
This work aimed to study the effect of laser surface treatment on the mechanical characteristics and corrosion behaviour of grey cast iron type A159. Many technical applications used conventional surface treatment, but laser surface hardening has recently been used to enhance the surface properties of many alloys. The mechanical characteristics, including microstructure, microhardness, and wear resistance of A159 grey cast iron, were studied, in addition to corrosion behaviour. The experimental laser parameters in this work were 0.9, 1.2, and 1.5 KW power with continuous wave carbon dioxide lasers with scanning speeds of 10 and 12 mm/s were used. The results found that phase-transitional alterations in microstructure were influenced by lase
... Show MoreAll the prepared metal complexes of Pt (IV), Au(III), Rh (III), Co (II) and V(IV) with new ligand sodium [5-(p-nitro phenyl)-/4-phenyl-1,2,4-triazole-3-dithiocarbamato hydrazide] (TRZ.DTC) have been synthesized and characterized in solid state by using flame atomic absorption, elemental analysis C.H.N.S, FT-IR ,UV-Vis Spectroscopy, conductivity and magnetic susceptibility measurements. The nature of the complexes formed in ethanolic solution has been studied following the molar ratio method also was studied stability constant and found to be stable in molar ratio1:1 of VL (IV) and CoL(II) while Pt(IV), Au(III) and Rh(III) complexes stable in molar ratio 1:2 as well as the molar absorptivity for these complexes were calculated. From the prev
... Show MoreThe research undertaken has provided a comprehensive insight into the practice of cupping therapy, a traditional treatment modality that has seen resurgence in. modern complementary medicine. This exploration, focusing on a spectrum of. Conditions such as migraines, lower back pain, neck pain, knee osteoarthritis, and chronic urticaria, highlights the potential benefits and the necessity for a deeper. Scientific understanding of cupping therapy. Cupping therapy, with its roots deeply embedded in ancient medical practices, offers a unique approach to treatment by promoting healing through increased blood flow and the release of toxins from the body. The application of this therapy in treating migraines has shown promising results, su
... Show MoreThe research undertaken has provided a comprehensive insight into the practice of cupping therapy, a traditional treatment modality that has seen resurgence in. modern complementary medicine. This exploration, focusing on a spectrum of. Conditions such as migraines, lower back pain, neck pain, knee osteoarthritis, and chronic urticaria, highlights the potential benefits and the necessity for a deeper. Scientific understanding of cupping therapy. Cupping therapy, with its roots deeply embedded in ancient medical practices, offers a unique approach to treatment by promoting healing through increased blood flow and the release of toxins from the body. The application of this therapy in treating migraines has shown promising results, su
... Show MoreDenture bases are fabricated routinely using Poly(methyl methacrylate) (PMMA) acrylic resin. Yet, it is commonly known for its major drawbacks such as insufficient strength and ductility. The purpose of this study was to improve the performance of PMMA acrylic resin as a denture base material by reinforcement with surface treated lithium disilicate glass ceramic powder. The ceramic powder was prepared by grinding and sieving IPS e.max CAD MT blocks. Then, the powder was surface treated with an organosilane coupling agent (TMSPM) and added to PMMA in amount of 1%, 3%, 5% and 7% by weight. Characterizations of the powder was done by particle size analysis, XRD and FTIR. Transverse strength, Impact strength, Shore D hardness and surface roughn
... Show More