Background: The desire for an attractive appearing fixed orthodontic appliance fueled the use of ceramic brackets and clear accessories. Elastics are one of the most versatile materials available to orthodontists so studying their effect on the esthetic appearance is important. This an in vivo study, conducted to evaluate the effect of exposing stretched clear elastomeric ligatures to the oral environment from four different companies (OrthoTechnology, Morelli, Ortho Organizer, and Ormco). Materials and Methods: A total of 240 elastomeric modules were examined, 60 modules from each brand. Each of the 60 patients enrolled in the study, received 4 elastomeric modules on the 4 lower incisors, one from each brand. The specimens were placed on the teeth for 1, 2 and 4 weeks. After removal each module was kept in a sealed plastic bag and prepared for imaging and color measurement. Color measurements were made before and after use of the specimens. Images were taken by a cellular attachable microscope connected to a mobile phone with special J-cam program and the color change was calculated according to CIE Labcolor spaces system by the Adobe Photoshop program. The resulting data were statistically analyzed using ANOVA, LSD and Chi square tests. Results: The results showed that, all the elastomeric ligatures discolored after use. The discoloration increased with an increased incubation period in the mouth reaching the peak at 4 weeks interval and the yellowness index was the mostly effected color component. Elastomeric ligatures from Morelli brand were the most prone to discoloration, while Ortho Organizers and Ormco ligatures were the least prone to discoloration with the presence of large individual variation. Conclusion: It is necessary to alert the patient about the color changes that the clear ligatures experienced and the staining effect of certain foods. The orthodontist should select brands that are more resistant to color changes.
Predicting peterophysical parameters and doing accurate geological modeling which are an active research area in petroleum industry cannot be done accurately unless the reservoir formations are classified into sub-groups. Also, getting core samples from all wells and characterize them by geologists are very expensive way; therefore, we used the Electro-Facies characterization which is a simple and cost-effective approach to classify one of Iraqi heterogeneous carbonate reservoirs using commonly available well logs.
The main goal of this work is to identify the optimum E-Facies units based on principal components analysis (PCA) and model based cluster analysis(MC
... Show MoreMachine learning (ML) is a key component within the broader field of artificial intelligence (AI) that employs statistical methods to empower computers with the ability to learn and make decisions autonomously, without the need for explicit programming. It is founded on the concept that computers can acquire knowledge from data, identify patterns, and draw conclusions with minimal human intervention. The main categories of ML include supervised learning, unsupervised learning, semisupervised learning, and reinforcement learning. Supervised learning involves training models using labelled datasets and comprises two primary forms: classification and regression. Regression is used for continuous output, while classification is employed
... Show MoreBACKGROUND: The degree of the development of coronary collaterals is long considered an alternate – that is, a collateral – source of blood supply to an area of the myocardium threatened with vascular ischemia or insufficiency. Hence, the coronary collaterals are beneficial but can also promote harmful (adverse) effects. For instance, the coronary steal effect during the myocardial hyperemia phase and that of restenosis following coronary angioplasty. OBJECTIVES: Our study explores the contribution of coronary collaterals – if any exist – while considering other potential predictors, including demographics and medical history, toward the left ventricular (LV) dysfunction measured through the LV ejection fraction (LVEF). METH
... Show MoreThe effect of the tensor term in the Skyrme interaction has been estimated in calculating the static and dynamic nuclear properties in sd and fp-shell model spaces nuclei. The nuclear shell gaps have been studied with different Skyrme parameterizations; Skxta and Skxtb with tensor interaction, SkX, SkM, and SLy4 without tensor interaction, and Skxcsb with consideration of the effect of charge symmetry breaking. We have examined the stability of N = 28 for 42Si and 48Ca. The results showed that the disappearance of the magicity occurs in the shell closure of 42Si. Furthermore, excitation energy, quadrupole deformation, neutron separation energy, pairing energy, and density profile have also been calculated. Quadrupole deformation indicates a
... Show MoreAbstract :
The research aims to Estimate the Strength of Strategic Innovation application in terms of application strength , and on the overall level in number of Iraqi Industrial business organizations . After wards determine whether their is differerences among those organizations in application process for the dimensions , and for the overall process .
The Research revealed number of conclusions including that the process of strategic innovation is applied in a good Level , and demonstrates the desier of the industrial companies Leaders to Launch beyond the familiar products , and to provide new products that
... Show MoreExperimental tests were conducted to investigate the thermal performance (cooling effect) of water mist system consisting of 5μm volume median diameter droplets in reducing the heat gain entering a room through the roof and the west wall by reducing the outside surface temperature due to the evaporative cooling effect during the hot dry summer of Baghdad/Iraq. The test period
was Fifty one days during the months May, June, and July 2012. The single test day consists of 16 test hours starting from 8:00 am to 12:00 pm. The results showed a reduction range of 1.71 to 15.5℃ of the roof outside surface temperature and 21.3 to 76.6% reduction in the daily heat flux entering the room through the roof compared with the case of not using w
Lung cancer is one of the most serious and prevalent diseases, causing many deaths each year. Though CT scan images are mostly used in the diagnosis of cancer, the assessment of scans is an error-prone and time-consuming task. Machine learning and AI-based models can identify and classify types of lung cancer quite accurately, which helps in the early-stage detection of lung cancer that can increase the survival rate. In this paper, Convolutional Neural Network is used to classify Adenocarcinoma, squamous cell carcinoma and normal case CT scan images from the Chest CT Scan Images Dataset using different combinations of hidden layers and parameters in CNN models. The proposed model was trained on 1000 CT Scan Images of cancerous and non-c
... Show More