Background: Calcium hydroxide and calcium-silicate materials used as direct pulp capping materials. The aims of this in vitro study is to compare among these materials in, the calcium ion release and pH change in soaking water after immersion of materials’ specimens in deionized water. Also Solubility and water sorption of materials’ specimens measured after soaking time. Calcium-silicate materials used were Biodentine, TheraCal and MTA Plus. Materials and methods: Four materials used in this study; Urbical lining (as control group), Biodentine, TheraCal and MTA Plus. Ten discs fabricated from each tested material, by using plastic moulds of 9 mm diameter and 1 mm thickness. Each specimen was immersed in 10 ml of deionized water and stored at 37ºC using incubator for 3 hr, 24hr, 14 days and 30 days as a sequence. The amount of calcium ion (Ca+2) released in soaking water was measured in each tube using atomic absorption spectrophotometer. Also pH analysis for soaking water measured by using pH meter. For solubility and water sorption measurement, the specimen (n=10) weighed with precision weighing scale before immersion in deionzed water to determine the initial Weight (W1) and immediately after weighing immersed in 10 mL of deionized water at 37 °C for 1 week using an incubator, then removed and weighing again (W2). The samples blotted dry using filter paper and dehydrated in an oven at 37 °C for 24 hr. and weighed again (W3). Then percentage of solubility and water sorption were determined. Data obtained were analyzed using one-way ANOVA and Tukey tests at 0.05 significant levels. Results: Statistical analysis showed highly significant differences (P<0. 05) among tested materials and in all tests (Ca+2 release, pH change, solubility and water sorption). Biodentine showed higher calcium ion released at four soaking time (3 hr, 24hr, 14 days and 30 days), with non significant difference with TheraCal and highly significant difference with MTA Plus and control group at 24 hr. immersion time; While MTA Plus showed non significant difference with control group at 24 hr. Less amount of calcium released was in control group. All tested materials induced alkalization of the soaking water that decreased with time. Means of solubility and water sorption showed that MTA Plus and biodentine had higher solubility in comparison with control group, while TheraCal showed less solubility than control group. The results of water sorption showed that less sorption percentage occurred in control group in comparison with other groups. Conclusion: calcium-silicate materials released more Ca+2 with time than calcium hydroxide. TheraCal showed less solubility and higher water sorption in comparison with control group. Biodentine and MTA Plus showed higher solubility and water sorption in comparison with TheraCal and control group.
Porous materials play an important role in creating a sustainable environment by improving wastewater treatment's efficacy. Porous materials, including adsorbents or ion exchangers, catalysts, metal–organic frameworks, composites, carbon materials, and membranes, have widespread applications in treating wastewater and air pollution. This review examines recent developments in porous materials, focusing on their effectiveness for different wastewater pollutants. Specifically, they can treat a wide range of water contaminants, and many remove over 95% of targeted contaminants. Recent advancements include a wider range of adsorption options, heterogeneous catalysis, a new UV/H2O
The influence of Cr3+ doping on the ground state properties of SrTiO3 perovskite was evaluated using GGA-PBE approximation. Computational modeling results infered an agreement with the previously published literature. The modification of electronic structure and optical properties due to Cr3+ introducing into SrTiO3 were investigated. Structural parameters assumed that Cr3+ doping alters the electronic structures of SrTiO3 by shifting the conduction band through lower energies for the Sr and Ti sites. Besides, results showed that the band gap was reduced by approximately 50% when presenting one Cr3+ atom into the SrTiO3 system and particularly positioned at Sr sites. Interestingly, substituting Ti site by Cr3+ led to eliminating the band ga
... Show MoreThis research aims to improve the radiation shielding properties of polymer-based materials by mixing PVC with locally available building materials. Specifically, two key parameters of fast neutron attenuation (removal cross-section and half-value layer) were studied for composite materials comprising PVC reinforced with common building materials (cement, sand, gypsum and marble) in different proportions (10%, 30% and 50% by weight). To assess their effectiveness as protection against fast neutrons, the macroscopic neutron cross-section was calculated for each composite. Results show that neutron cross-section values are significantly affected by the reinforcement ratios, and that the composite material PVC + 50% gypsum is an effect
... Show MoreBackground: The finite element method (FEM) is expected to be one of the most effective computational tools for measuring the stress on implant-supported restorations. This study was designed using the 3D-FEM to evaluate the effect of two adhesive luting types of cement on the occlusal stress and deformation of a hybrid crown cemented to a mono-implant. Materials and Method: The mono-screw STL file was imported into the CAD/CAM system library from a database supported by De-Tech Implant Technology. This was to assist in the accurate reproduction of details and design of a simulated implant abutment. Virtually, a digital crown was designed to be cemented on an abutment screw. A minimum occlusal thickness of 1mm and marginal fitting of 1.2
... Show MoreThis study focused on treating wastewater to remove phosphorus by adsorption onto naturaland local materials. Burned kaolin, porcelinite, bauxite and limestone were selected to be testedas adsorption materials.The adsorption isotherms were evaluated by batch experiments, studyingthe effects of pH, temperature and initial phosphorus concentration. The results showed that at pH6, temperature 20°C and 300 mg/l initial phosphorus concentration; the sorption capacity was0.61, 9, 10 and 13 mg/g at 10 h contact time, for burned kaolin, porcelanite, limestone and bauxiterespectively. As the pH increased from 2 to 10 the removal efficiency for the materials differs inbehaviour. The removal efficiency increased from 40 to 90 % for limestone, and dec
... Show MoreThis contribution evaluates the influence of Cr doping on the ground state properties of SrTiO3 Perovskite using GGA-PBE approximation. Results of the simulated model infer agreement with the previously published literature. The modification of electronic structure and optical properties due to Cr3+ doping levels in SrTiO3 has been investigated. Structural parameters infer that Cr3+ doping alters the electronic structures of SrTiO3 by shifting the conduction band through lower energies for the Sr and Ti sites. Substituting Ti site by Cr3+ results the energy gap in being eliminated revealing a new electrical case of conducting material for the system. Furthermore, it has been noticed that Cr doping either at Sr or Ti positions could effectiv
... Show MoreTested effective Alttafaria some materials used for different purposes, system a bacterial mutagenesis component of three bacterial isolates belonging to different races and materials tested included drug Briaktin
Landfill and incineration are the most common and widely used methods to dispose of solid wastes; both of these techniques are considered the main sources of pollution in the world due to the harmful toxic emissions that are considered an environmental problem. Because of the large areas used by landfills, they are not always considered an economical method. With the increase in the production of solid materials, solid wastes increase the pressure on incinerators and landfills, making the environmental pollution hazard more serious. Instead, these waste materials can be used in some other applications. One of the most important of these applications is asphalt pavements, which are the most used types of pavements in the
... Show MoreIraqi siliceous rocks were chosen to be used as raw materials in this study which is concern with the linear shrinkage and their related parameters. They are porcelinite from Safra area (western desert) and Kaolin Duekla, their powders were mixed in certain percentage, to shape compacts and sintered. The study followed with thermal and chemical treatments, which are calcination and acid washing. The effects on final compact properties such as linear shrinkage were studied. Linear shrinkage was calculated for sintered compacts to study the effects of calcination processes, chemical washing, weight percentage, sintering processes, loading moment were studied on this property where the compacts for groups is insulating materials.
Linear