Background: Chronic periodontitis is a bacterial infection that result in bone destruction associated with the increasing level of salivary tumor necrosis alpha and interleukin6 that affect Mother-infant bonding status. The aim of the present study was to assess the relationship between the Mother-infant bonding status in mothers with chronic periodontitis in relation to Salivary Tumor necrosis factor alpha and Salivary Interleukin6. Materials and Methods: The selected sample consisted of mothers with chronic periodontitis compared with mothers with healthy periodontium in postpartum period, their age ranged between 30-40 years. Both groups were subjected to postpartum Bonding Questionnaire (PBQ). Periodontal health status was assessed for control group like plaque index and gingival index in order to obtain control group with healthy periodontium, while measuring probing pocket depth and clinical attachment level in addition to plaque and gingival index for study group. Salivary Tumor necrosis factor alpha and Interleukin6 measure in saliva by enzyme-linked immune sorbent assay (ELISA). Results: The mean values of Salivary Tumor necrosis factor alpha and Interleukin 6 were found to be higher among mothers with chronic periodontitis than mothers with normal bonding relationship, and the percentage of disorder mother-infant bonding relation was higher in study group than in control group. Conclusion: Mother-infant bondings affected by chronic periodontitis as the patient have higher Salivary Tumor necrosis factor alpha and Salivary Interleukin6 than mothers with healthy periodontal condition.
An electrocoagulation process has been used to eliminate the chemical oxygen demand (COD) from wastewaters discharged from the Al-Muthanna petroleum refinery plant. In this process, a circular aluminum bar was used as a sacrificial anode, and hallow cylinder made from stainless steel was used as a cathode in a tubular batch electrochemical Reactor. Impacts of the operating factors like current density (5-25mAcm-2), NaCl addition at concentrations (0-2g/l), and pH at values (3-11) on the COD removal efficiency were studied.
Results revealed that the increase in current density increases the COD removal efficiency, whereas an increase
In this work, multilayer nanostructures were prepared from two metal oxide thin films by dc reactive magnetron sputtering technique. These metal oxide were nickel oxide (NiO) and titanium dioxide (TiO2). The prepared nanostructures showed high structural purity as confirmed by the spectroscopic and structural characterization tests, mainly FTIR, XRD and EDX. This feature may be attributed to the fine control of operation parameters of dc reactive magnetron sputtering system as well as the preparation conditions using the same system. The nanostructures prepared in this work can be successfully used for the fabrication of nanodevices for photonics and optoelectronics requiring highly-pure nanomaterials.
Protection of the oil pipelineswhich extracted from the wells was found to shut the well and prevent the leakage of oil when broken using safety valve. This valve is automatically activated by loss of pressure between the well and pipelines, which take the pressure, signal from hydraulic pressure sensor through pressure control valve which has constant or variable value but it is regulated manually. The manual regulatory process requires the presence of monitoring workers continuously near the wells which are always found in remote areas. In this paper, a smart system has been proposed that work with proportional pressure control valve and also electronic pressure sensor through Arduino controller, which is programmed in a way that satisfie
... Show MoreIn this study, the potential of adsorption of amoxicillin antibiotic (AMOX) from aqueous solutions using prepared activated carbon (AC) was studied. The used AC was prepared from an inexpensive and available precursor (sunflower seed hulls (SSH)) and activated by potassium hydroxide (KOH). The prepared AC was examined for its ability to remove AMOX from aqueous contaminated solutions and characterized with the aid of N2 -adsorption/desorption isotherm Brunauer–Emmett– Teller, scanning electron microscopy, energy-dispersive X-ray spectroscopy and Fourier-transform infrared. Zeta potential of the prepared activated carbon from sunflower seed hulls (SSHAC) were studied in relation to AMOX adsorption. The physical and chemical propert
... Show MoreDuring COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreThe insulation system of a machine coil includes several layers made of materials with different characteristics. The effective insulation design of machine coils, especially in the machine end winding, depends upon an accurate model of the stress grading system. This paper proposes a modeling approach to predict the transient overvoltage, electric field, and heat generation in machine coils with a stress grading system, considering the variation of physical properties in the insulation layers. A non-uniform line model is used to divide the coil in different segments based on material properties and lengths: overhang, stress grading and slot. The cascaded connection of chain matrices is used to connect segments for the representation of the
... Show More