Preferred Language
Articles
/
jbcd-279
Expression of matrix metalloproteinase-2 in the extracellular matrix of osseointegrated and diseased implants
...Show More Authors

Background: Recently with improvement of dental implantology science, osseointegrated implants show a considerable durability, however; failures are not completely avoidable. Matrix metalloproteinase-2 (MMP-2) expression is disturbed in many pathological conditions such as peri-implantitis and periodontitis. This study was carried out to investigate the tissue expression of MMP-2 in the extracellular matrix of osseointegrated and diseased implants. Subjects and methods: Gingival biopsies were collected from six patients having osseointegrated or working implants and twenty with diseased or non osseointegrated implants and (6) controls having no implants. In situ hybridization technique was used to analyze the changes in immunoreactivity of ECM-controlling MMP-2. Results: The findings of the present study indicate that the expression of MMP2 was significantly elevated in failed implants versus healthy implants (P<0.01). In addition, MMP-2 was detected in peri-implant sites with ongoing bone loss, cavitations and inflammatory reaction. Conclusion: The in situ hybridization technique, showed clear evidence that MMP-2, which is involved in the process of osseointegration and bone remodeling, increase greatly in the presence of bone destruction, cavitations, severe inflammation and fibrous tissue formation. The data link titanium- induced bone remodeling to changes in expression and distribution of MMP-2.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jun 03 2023
Journal Name
Iraqi Journal Of Science
Effect Effect Effect Effect Effect Effect Effect of Thickness on Some Physical PropertiesThickness on Some Physical PropertiesThickness on Some Physical PropertiesThickness on Some Physical PropertiesThickness on Some Physical Properties Thickness on Some
...Show More Authors

The effect of thickness variation on some physical properties of hematite α-Fe2O3 thin films was investigated. An Fe2O3 bulk in the form of pellet was prepared by cold pressing of Fe2O3 powder with subsequent sintering at 800 . Thin films with various thicknesses were obtained on glass substrates by pulsed laser deposition technique. The films properties were characterized by XRD, and FT-IR. The deposited iron oxide thin films showed a single hematite phase with polycrystalline rhombohedral crystal structure .The thickness of films were estimated by using spectrometer to be (185-232) nm. Using Debye Scherrerś formula, the average grain size for the samples was found to be (18-32) nm. Atomic force microscopy indicated that the films had

... Show More
View Publication Preview PDF