Background: Tooth extraction is one of the most commonly performed procedures in dentistry. It is usually a traumatic process often resulting in immediate destruction and loss of alveolar bone and surrounding soft tissues. Various instruments have been described to perform atraumatic extractions which can prevent damage to the paradental structures. The physics forceps is one of those innovations in dental extraction technologies that claim to provide an efficient means for atraumatic dental extractions. Materials and method: A randomized clinical trial was conducted to compare the physics forceps with the conventional forceps for the removal of 28 mandibular single rooted teeth under the following parameters: incidence of crown, root, buccal alveolar bone fracture, the incidence of gingival tear and time needed for extraction. The samples were assigned randomly into two groups according to the computer based randomization software, into a control group (A) and study group (B). The control group was subjected to the surgical extraction procedure using the conventional forceps while the study group was subjected to the surgical extraction procedure using the physics forceps. Results: results showed that the time required for extraction using the physics forceps was (mean 0.385 min.), which was significantly lesser as compared with that of conventional forceps (mean 3.971 min.) (P=0.011), buccal bone fracture occurred in 4 out of 14 cases (28.57%) using the conventional forceps while it did not occur with the use of the physics forceps (0.00%), crown fracture occurred in 3 cases using the conventional forceps (21.43%), while it did not occur with the use of the physics forceps (0.00%), root fracture occurred in 1 case using the physics forceps (3.57%), while it did not occur with the use of the conventional forceps (0.00%). As for the gingival tear, it occurred in 7 cases using the conventional forceps (50.00%), while it did not occur with the use of the physics forceps (0.00%) which was highly significant (P=0.006). Conclusions: the use of physics forceps maintains the integrity of gingiva and surrounding periodontium. So extractions using physics forceps are less invasive over conventional forceps and can be considered as a reliable method for extraction requiring significantly less comparative intraoperative time.
Two series of 1,3,4-oxadiazole derivatives at the sixth position of the 2,4-di-
A simple physical technique was used in this study to create stable and cost-effective copper oxide (CuO) nanoparticles from pure copper metal using the pulsed laser ablation technique. The synthesis of crystalline CuO nanoparticles was confirmed by various analytical techniques such as particle concentration measurement using atomic absorption spectrometry (AAS), field emission scanning electron microscopy (FE-SEM), the energy dispersive X-ray (EDX), and X-ray diffraction (XRD) to determine the crystal size and identify of the crystal structure of the prepared particles. The main characteristic diffraction peaks of the three samples were consistent. The corresponding 2θ is also consistent, and the cytotoxicity of the nanoparticles was
... Show MoreThe Ligand 6,6--(1,2-benzenediazo) bis (3-aminobenzoicacid) derived from o-phenylenediamine and 3-aminobenzoicacid was synthesized. The prepared ligand was identified by Microelemental Analysis, 1HNMR, FT-IR and UV-Vis spectroscopic techniques. Treatment of the ligand with the following metal ions (CoII, NiII, CuII and ZnII ) in aqueous ethanol with a 1:1 M:L ratio and at optimum pH. Characterization of these compounds has been done on the basis of elemental analysis, electronic data, FT-IR and UV-Vis, as well as magnetic susceptibility and conductivity measurements. The nature of the complexes formed were studied following the mole ratio and continuous variation methods, Beer's law obeyed over a concentration range (1×10-4 - 3×10-4 M). H
... Show MoreThe variation in wing morphological features was investigated using geometric morphometric technique of the Sand Fly from two Iraqi provinces Babylon and Diyala . We distributed eleven landmarks on the wings of Sand Fly species. By using the centroid size and shape together, all species were clearly distinguished. It is clear from these results that the wing analysis is an essential method for future geometric morphometry studies to distinguish the species of Sand Flies in Iraq.
In this paper, a procedure to establish the different performance measures in terms of crisp value is proposed for two classes of arrivals and multiple channel queueing models, where both arrival and service rate are fuzzy numbers. The main idea is to convert the arrival rates and service rates under fuzzy queues into crisp queues by using graded mean integration approach, which can be represented as median rule number. Hence, we apply the crisp values obtained to establish the performance measure of conventional multiple queueing models. This procedure has shown its effectiveness when incorporated with many types of membership functions in solving queuing problems. Two numerical illustrations are presented to determine the validity of the
... Show More