Background: Tooth extraction is one of the most commonly performed procedures in dentistry. It is usually a traumatic process often resulting in immediate destruction and loss of alveolar bone and surrounding soft tissues. Various instruments have been described to perform atraumatic extractions which can prevent damage to the paradental structures. The physics forceps is one of those innovations in dental extraction technologies that claim to provide an efficient means for atraumatic dental extractions. Materials and method: A randomized clinical trial was conducted to compare the physics forceps with the conventional forceps for the removal of 28 mandibular single rooted teeth under the following parameters: incidence of crown, root, buccal alveolar bone fracture, the incidence of gingival tear and time needed for extraction. The samples were assigned randomly into two groups according to the computer based randomization software, into a control group (A) and study group (B). The control group was subjected to the surgical extraction procedure using the conventional forceps while the study group was subjected to the surgical extraction procedure using the physics forceps. Results: results showed that the time required for extraction using the physics forceps was (mean 0.385 min.), which was significantly lesser as compared with that of conventional forceps (mean 3.971 min.) (P=0.011), buccal bone fracture occurred in 4 out of 14 cases (28.57%) using the conventional forceps while it did not occur with the use of the physics forceps (0.00%), crown fracture occurred in 3 cases using the conventional forceps (21.43%), while it did not occur with the use of the physics forceps (0.00%), root fracture occurred in 1 case using the physics forceps (3.57%), while it did not occur with the use of the conventional forceps (0.00%). As for the gingival tear, it occurred in 7 cases using the conventional forceps (50.00%), while it did not occur with the use of the physics forceps (0.00%) which was highly significant (P=0.006). Conclusions: the use of physics forceps maintains the integrity of gingiva and surrounding periodontium. So extractions using physics forceps are less invasive over conventional forceps and can be considered as a reliable method for extraction requiring significantly less comparative intraoperative time.
Two ligand ortho-amino phenyl thio benzyl (L1) and 1,3 bis (ortho - amino phenyl thio ) acetone (L2) and their complexes have been prepared and characterized . The L1 ligand is lossing phenyl group on complexcation and forming 1,2 bis (ortho - amino phenyl thio ) ethane L3 and this tetrahedrally coordinated to the metal ion ( M+2 = Ni , Cu , Cd ) and octahedrally coordinated with mercury and cobalt ions , while the ligand L2 is behave as tridentate ligand forming octahedrally around chrome metal ion . Structural , diagnosis were established by i.r , Uv- visible , conductivity elemental analysis and (mass spectra , H nmr spectra for( L1 , L2 ) .
The paper discusses the structural and optical properties of In2O3 and In2O3-SnO2 gas sensor thin films were deposited on glass and silicon substrates and grown by irradiation of assistant microwave on seeded layer nucleated using spin coating technique. The X-ray diffraction revealed a polycrystalline nature of the cubic structure. Atomic Force Microscopy (AFM) used for morphology analysis that shown the grain size of the prepared thin film is less than 100 nm, surface roughness and root mean square for In2O3 where increased after loading SnO2, this addition is a challenge in gas sensing application. Sensitivity of In2O3 thin film against NO2 toxic gas is 35% at 300oC. Sensing properties were improved after adding Tin Oxide (SnO2) to be mo
... Show MoreIn humans, Pseudomonas aeruginosa is the second most frequent gram negative nosocomial pathogen in hospitals and has the highest case-fatality rate of all hospital-acquired bacteremia because of the hardy resistance of these bacteria to mechanical cleansing as well as to disinfectant, and many antibiotics. The susceptibility of bacteria against the antibiotics is modulated by several local factors such as temperature which modified drug efficacy, so this study was carried out to evaluate the effect of different temperature (20,42,45)Ċon the susceptibility of Pseudomonas aeruginosa to the minimum inhibitory concentrations (MIC) of the antimicrobial agents before and after irradiation. The samples collected from 150 persons suffering from
... Show MoreBiosorption is an effective method to remove toxic metals from wastewaters. In this study biosorption of lead and chromium ions from solution was studied using Citrobacter freundii and Citrobacter kosari isolated from industrial wastewater. The experimental results showed that optimum grwoth temperature for both bacteria is 30oC and the optimum pH is 7 &6 for C. freundii and C. kosari respectively. While the optimum incubation period to remove Pb and Cr for C. freundii and C. kosari is 4 days and 3days respectively. Also the biosorption of Pb and Cr in mixed culture of bacteria and mixed culture of Pb and Cr was investigated. Result indicate that uptake of Cr and Pb for C.freundii, C. kosari and in mixes culture of both bacteria is 58%, 53%
... Show MoreObjective(s): To evaluate nurses’ Practice toward neonatal endotracheal suctioning procedure, and to determine the effectiveness of the interventional program on nurses’ practices, as well as to find out the relationship between nurses’ practice and their demographic characteristics.
Methodology: A Pre-experimental, one group design, was carried out to achieve the objectives of the current study using the evaluation approach and the implementation of the education program for the period from January 17 to June 31, 2022. A non- probability, purposive sample of (24) nurses were selected from the Neonatal Intensive Care Unit at Pediatric Teaching Hospital/ Medical City Department. A checklist w
... Show MoreDielectric barrier discharges (DBD) can be described as the presence of contact with the discharge of one or more insulating layers located between two cylindrical or flat electrodes connected to an AC/pulse dc power supply. In this work, the properties of the plasma generated by dielectric barrier discharge (DBD) system without and with a glass insulator were studied. The plasma was generated at a constant voltage of 4 kV and fixed distance between the electrodes of 5 mm, and with a variable flow rate of argon gas (0.5, 1, 1.5, 2 and 2.5) L/min. The emission spectra of the DBD plasmas at different flow rates of argon gas have been recorded. Boltzmann plot method was used to calculate the plasma electron temperature (Te), and Stark broadeni
... Show More