Background: Bone regeneration in dehiscence and fenestration defect can be improved with the use of platelet rich fibrin (PRF) that provides a scaffold for new bone regeneration. This study was conducted to assess the effectiveness of PRF as a graft material and membrane in dehiscence and fenestration defects. Materials and Methods: This prospective clinical study included patients who received dental implants that demonstrated peri-implant defects which were augmented using Leukocyte- PRF (L-PRF) or Advanced-PRF (A-PRF). Twenty four weeks postoperatively the defect resolution and the density of regenerated bone were assessed by CBCT and re-entry surgery. The assessment also included measurement of primary and secondary implant stability using Periotest® M, success rate and complication rate of the installed implants. Results: The mean overall intraoperative defect size was 29.44 (± 14.1) mm2, postoperatively it became 2.07 (± 3.6) mm2 with a statistically significant difference (p= < 0.0001). There was no significant difference between L-PRF and A-PRF. Defect resolution ranged from 80% to 100% with a mean of 95.7% (± 6.7%). Defects that showed complete resolution were significantly smaller in size (21.2± 7 mm2) than those that showed partial resolution (44.4± 11 mm2). The overall mean primary stability recorded was 2.9 (± 1.6) Periotest values (PTV) and overall mean secondary stability was -0.22 (±1.4) (P<0.0001).The overall mean HU of the newly formed peri-implant bone was 385.7 (± 77.4). Conclusions: PRF as the sole graft material for peri-implant defects results in complete defect resolution in small to moderate defects, larger defects may require the addition of bone substitute to achieve complete defect resolution.
In this study, nanocomposites have been prepared by adding
multiwall carbon nanotubes (MWCNTs) with weight ratios (0, 2, 3,
4, 5) wt% to epoxy resin. The samples were prepared by hand lay-up
method. Influence of an applied load before and after immersion in
sodium hydroxide (NaOH) of normality (0.3N) for (15 days) at
laboratory temperature on wear rate of Ep/MWCNTs
nanocomposites was studied. The results showed that wear rate
increases with increasing the applied load for the as prepared and
immersed samples and after immersion. It was also found that epoxy
resin reinforced with MWCNTs has wear rate less than neat epoxy.
The sample (Ep + 5wt% of MWCNTs) has lower wear rate. The
immersion effect in base so
Background: Chronic hepatitis B virus (HBV) infection is a common health problem that has a worldwide distribution. Apart from the direct effect of the virus on the liver, there are many extrahepatic manifestations among which the probable effect on bone turnover associated with low bone mineral density (BMD). Objectives: This study aimed to determine the association between treated and untreated chronic HBV infection with BMD. Methods: This is a cross-sectional study which included a total of 48 patients with chronic HBV (28 patients treated with tenofovir-disoproxil-fumarate [TDF] antiviral drug and 20 patients have not yet started treatment). Other age- and sex-matched 30 apparently healthy individuals were recruited to represent the hea
... Show MoreChlorinated volatile organic compounds (CVOCs) are toxic chemical entities emitted invariably from stationary thermal operations when a trace of chlorine is present. Replacing the high-temperature destruction operations of these compounds with catalytic oxidation has led to the formulation of various potent metal oxides catalysts; among them are ceria-based materials. Guided by recent experimental measurements, this study theoretically investigates the initial steps operating in the interactions of ceria surface CeO2(111) with three CVOC model compounds, namely chloroethene (CE), chloroethane (CA) and chlorobenzene (CB). We find that, the CeO2(111) surface mediates fission of the carbon–chlorine bonds in the CE, CA and CB molecules via mo
... Show MoreIn this paper, the human robotic leg which can be represented mathematically by single input-single output (SISO) nonlinear differential model with one degree of freedom, is analyzed and then a simple hybrid neural fuzzy controller is designed to improve the performance of this human robotic leg model. This controller consists from SISO fuzzy proportional derivative (FPD) controller with nine rules summing with single node neural integral derivative (NID) controller with nonlinear function. The Matlab simulation results for nonlinear robotic leg model with the suggested controller showed that the efficiency of this controller when compared with the results of the leg model that is controlled by PI+2D, PD+NID, and F
... Show MoreDigital Elevation Model (DEM) is one of the developed techniques for relief representation. The definition of a DEM construction is the modeling technique of earth surface from existing data. DEM plays a role as one of the fundamental information requirement that has been generally utilized in GIS data structures. The main aim of this research is to present a methodology for assessing DEMs generation methods. The DEMs data will be extracted from open source data e.g. Google Earth. The tested data will be compared with data produced from formal institutions such as General Directorate of Surveying. The study area has been chosen in south of Iraq (Al-Gharraf / Dhi Qar governorate. The methods of DEMs creation are kriging, IDW (inver
... Show MoreSingle mode-no core-single mode fiber structure with a section of tuned no-core fiber diameter to sense changes in relative humidity has been experimentally demonstrated. The sensor performance with tuned NCF diameter was investigated to maximize the evanescent fields. Different tuned diameters of of (100, 80, and 60)μm were obtained by chemical etching process based on hydrofluoric acid immersion. The highest wavelength sensitivity was obtained 184.57 pm/RH% in the RH range of 30% –100% when the no-core fiber diameter diameter was 60 μm and the sensor response was in real-time measurements
As a reservoir is depleted due to production, pore pressure decreases leading to increased effective stress which causes a reduction in permeability, porosity, and possible pore collapse or compaction. Permeability is a key factor in tight reservoir development; therefore, understanding the loss of permeability in these reservoirs due to depletion is vital for effective reservoir management. The paper presents a case history on a tight carbonate reservoir in Iraq which demonstrates the behavior of rock permeability and porosity as a function of increasing effective stress simulating a depleting mode over given production time. The experimental results show unique models for the decline of permeability and porosity as function effective str
... Show More