Background: The surface properties of the titanium alloy plays a significant role in the bond of the dental implant with living bone and modification of the implant surface could enhance osseointegration. This study was aimed to investigate the effect of different durations of heat treatment on the surface properties of titanium alloy for dental implants. Materials and methods: Twenty disks of (Ti-6Al-4V) alloy were prepared. The sample was divided into four test groups to study the effect of different duration of heat treatment to the surface topography; surface chemistry, titanium oxide layer thickness, blood contact angle, & blood drop diameter of titanium alloy samples were investigated to evaluate the effect of different durations of heat treatment at a temperature of 750°C. Results: The surface topography, surface chemistry, titanium oxide layer thickness, blood contact angle, & blood drop diameter of titanium alloy samples improved highly significantly as the duration of heat treatment increased. Conclusions: The heat treatment of 750°C for 90 minutes showed the highest improvement in the surface properties which in turn will lead to enhancement in the osseointegration of the dental implant.
Nanotechnology is a continually expanding field for its uses and applications in multiple areas i.e. medicine, science, and engineering. Biosynthesis is straightforward, less-toxicity, and cost-effective technology. TiO2 NPs biosynthesis has attained consideration in recent decades. In this study, probiotic bacteria were isolated from cow’s raw milk samples, and then were identified by using the Vitek2 system; as Leuconostoc spp. included Leuconostoc mesenteroides subsp. mesenteroides (Leu.1), Leuconostoc mesenteroides subsp. cremoris (Leu.4), and Leuconostoc pseudomesenteroides (Leu.14). All Leuconostoc spp. isolates showed an ability for TiO2 NPs bio-production, after being incubated at anaerobic conditions (30 o C/ 24 h) in DeM
... Show MoreBackground: One of the most important complications of fixed orthodontic treatment is formation of white spots, which are initial carious lesions. Addition of antimicrobial agents into orthodontic adhesive material might be wise solution for prevention of white spots formation. The aim of this study was to evaluate the antibacterial properties of orthodontic adhesive primer against S. Mutans after adding the three different types of nanoparticles (Ag, ZnO, or TiO2). Materials and methods: Discs were prepared using empty insulin syringe approximately 2 mm×2 mm rounded in shape specimens (40 discs) were divided into four groups (ten discs for each group): The first group was the control (made from primer only), the second group (10 dis
... Show MoreThe experimental and theoretical methods were studied for inhibition of the corrosion titanium in HCl by using neomycin sulfate drug. The results of neomycin sulfate drug had good corrosion protection for titanium in hydrochloric acid and the inhibition efficiency (%IE) increasing with increasing concentration of drug because the neomycin sulfate drug had adsorption from acid solution on surface of titanium metal. The program of hyperchem-8.07 was used for theoretical study of the drug by molecular mechanics and semi-empirical calculations. Quantum chemical was studied drug absorption and electron transferred from the drug to the Titanium metal, also inhibition potentials of drug attachment with the (LUMO-HOMO) energy gap,
... Show MoreA.C electrical conductivity and dielectric properties for poly
(vinyl alcohol) (PVA) /poly (ethylene oxide) (PEO) blends undoped
and doped with multi-walled carbon nanotube (MWCNTs) with
different concentrations (1, and 3 wt %) in the frequency range
(25x103 - 5x106 Hz) were investigated. Samples of (PVA/PEO)
blends undoped and doped with MWCNTs were prepared using
casting technique. The electrical conductivity measurements showed
that σA.C is frequency dependent and obey the relation σA.C =Aωs for
undoped and doped blends with 1% MWCNTs, while it is frequency
independent with increases of MWCNTs content to 3%. The
exponent s showed proceeding increase with the increase of PEO
ratio (≥50%) for undope
This work is devoted to define new generalized gamma and beta functions involving the recently suggested seven-parameter Mittag-Leffler function, followed by a review of all related special cases. In addition, necessary investigations are affirmed for the new generalized beta function, including, Mellin transform, differential formulas, integral representations, and essential summation relations. Furthermore, crucial statistical application has been realized for the new generalized beta function.
Background: Information concerning the maximum bite force in human population is important to clinical orthodontics. Additionally, the influence of bite force on the vertical stability of any treatment result is important. The new position of the dentition should be compatible with the dynamics of the muscular and occlusal forces in all planes. This study was conducted to 1) to measure and compare maximum bite force, body height and weight among normal occlusion and malocclusion groups (cl I,cl II,cl III) in both gender 2) to evaluate the correlation between bite force and craniofacial morphology, body height and weight. Materials and Methods: The sample consists of 100 Iraqi adult subjects aged 18-25 years. It was classified in to four gr
... Show MoreIn this work, the spectra for plasma glow produced by pulse
Nd:YAG laser (λ=532 and 1064nm) on Ag:Al alloy with same molar
ratio samples in distilled water were analyzed by studying the atomic
lines compared with aluminum and silver strong standard lines. The
effect of laser energies of the range 300 to 800 mJ on spectral lines,
produced by laser ablation, were investigated using optical
spectroscopy. The electron temperature was found to be increased
from 1.698 to 1.899 eV, while the electron density decreased from
2.247×1015 to 5.08×1014 cm-3 with increasing laser energy from 300
to 800 mJ with wavelength of 1064 nm. The values of electron
temperature using second harmonic frequency are greater than of<
Sn effect on the phase transformation behavior, microstructure, and micro hardness of equiatomic Ni-Ti shape memory alloy was studied. NiTi and NiTiSn alloys were produced using vacuum induction melting process with alloys composition (50% at. Ni, 50% at.Ti) and (Ni 48% at., Ti 50% at., Sn 2% at.). The characteristics of both alloys were investigated by utilizing Differential Scanning Calorimetry, X- ray Diffraction Analysis, Scanning Electron Microscope, optical microscope and vicker's micro hardness test. The results showed that adding Sn element leads to decrease the phase transformation temperatures evidently. Both alloy samples contain NiTi matrix phase and Ti2Ni secondary phase, but the Ti2Ni phase content dec
... Show More