Background: The surface properties of the titanium alloy plays a significant role in the bond of the dental implant with living bone and modification of the implant surface could enhance osseointegration. This study was aimed to investigate the effect of different durations of heat treatment on the surface properties of titanium alloy for dental implants. Materials and methods: Twenty disks of (Ti-6Al-4V) alloy were prepared. The sample was divided into four test groups to study the effect of different duration of heat treatment to the surface topography; surface chemistry, titanium oxide layer thickness, blood contact angle, & blood drop diameter of titanium alloy samples were investigated to evaluate the effect of different durations of heat treatment at a temperature of 750°C. Results: The surface topography, surface chemistry, titanium oxide layer thickness, blood contact angle, & blood drop diameter of titanium alloy samples improved highly significantly as the duration of heat treatment increased. Conclusions: The heat treatment of 750°C for 90 minutes showed the highest improvement in the surface properties which in turn will lead to enhancement in the osseointegration of the dental implant.
In this research, damping properties for composite materials were evaluated using logarithmic decrement method to study the effect of reinforcements on the damping ratio of the epoxy matrix. Three stages of composites were prepared in this research. The first stage included preparing binary blends of epoxy (EP) and different weight percentages of polysulfide rubber (PSR) (0%, 2.5%, 5%, 7.5% and 10%). It was found that the weight percentage 5% of polysulfide was the best percentage, which gives the best mechanical properties for the blend matrix. The advantage of this blend matrix is that; it mediates between the brittle properties of epoxy and the flexible properties of a blend matrix with the highest percentage of PSR. The second stage
... Show MoreOne of the most popular causes for implant infection is dental plaque bacteria. Previous studies have shown the bactericidal effect of CO2 laser irradiation on bacteria associated with soft tissue surrounding the implant materials. No published studies have examined the effect of irradiation by CO2 laser on Streptococcus oralis and Staphylococcus aureus.The aim of this study was to evaluate the bactericidal effect of CO2 laser on bacteria that are causing dental implant infections. This study was carried out on two isolates of bacterial species out of 25 samples, isolated from patients having soft tissue infections around the dental implant. These two pure isolates including Streptococcus oralis and Staphylococcus aureus were identified
... Show MoreThe formulations and the properties of the Zinc Polycarboxylate Dental Cements are reviewed then new cements of this type are prepared with modified solid part of the cement. High silica glass powder with different particle sizes is prepared and added with different weight percentages to the zinc oxide. The liquid part of the prepared cements was merely 44% concentration of the polyacrylic acid. Accordingly, the usual and expensive additives to the liquid and solid part of the cement are eliminated. The working and setting times, compressive strength, flexural strength and modulus are measured according to ADA specifications. The formulated cement has long working times without much lengthening of the setting times. In addit
... Show MoreThree different types of nozzles (different wear rate) were used in this study. They are classified depending on the severity of their wear to three groups: new, worn and damaged nozzles. Those nozzles were spraying with the same application rate (303 l/ha) on two-year field trials; this was achieved by changing the spraying pressure for each group of nozzles in order to get the same application rate. This practice is usually done by operators of sprayers, who calibrate the sprayers on the same application rate every year without changing the nozzles, so they tend to reduce the spraying pressure in order to compensate the flow rate increase due to the nozzles yearly wear. Two types of
ZnO nanostructures were synthesized by hydrothermal method at different temperatures and growth times. The effect of increasing the temperature on structural and optical properties of ZnO were analyzed and discussed. The prepared ZnO nanostructures were characterized by X-ray diffraction (XRD), UV–Vis. absorption spectroscopy (UV–Vis.), Photoluminescence (PL), and scanning electron microscopy (SEM). In this work, hexagonal crystal structure prepared ZnO nanostructures was observed using X-ray diffraction (XRD) and the average crystallite size equal 14.7 and 23.8 nm for samples synthesized at growth time 7 and 8 hours respectively. A nanotubes-shaped surface morphology was found using scanning electron microscopy (SEM). The optic
... Show MoreZinc oxide (ZnO) nanoparticles were synthesized using a modified hydrothermal approach at different reaction temperatures and growth times. Moreover, a thorough morphological, structural and optical investigation was demonstrated using scanning electron microscopy (SEM), x-ray diffraction (XRD), ultra-violate visible light spectroscopy (UV-Vis.), and photoluminescence (PL) techniques. Notably, SEM analysis revealed the occurrence of nanorods-shaped surface morphology with a wide range of length and diameter. Meanwhile, a hexagonal crystal structure of the ZnO nanoparticles was perceived using XRD analysis and crystallite size ranging from 14.7 to 23.8 nm at 7 and 8 ℎ𝑟𝑠., respectively. The prepared ZnO samples showed good abso
... Show MoreThe superconductor compound (YBa2Cu2.8Zn0.2O7+δ) is prepared by solid state reaction (SSR), Sol-gel (SG) and laser Pulse deposition (PLD) methods. We used the X-ray diffraction technique, which shows an orthorhombic crystalline system for all the samples, and increase in the high-phase (Y-123) and decrease in low-phase and vary in proportion according to the method of preparation with the emergence of some impurities. The behavior of the samples in terms of electrical resistance and critical temperature was investigated all samples showed superconducting behavior. The properties of the dielectric (real dielectric constant, imaginary dielectric constant, loss tangent, alternating electrical conductivity) were s
... Show MoreCerebellum is the most important and critical part of the central nervous system, cerebellum is very sensitive to the abnormal changes during the embryological development in its histological structure, the exposure to any infection during embryogenesis produce abnormalities in the cerebellum and behavioral of offspring. In this study we tried to study the ontogenesis of the cerebellum in the embryos of the albino rats and detection the effect of the AgNPs on the ontogenesis of the rat cerebellum after exposure of AgNPs during pregnancy. we used 60 female pregnant rats divided in to three group, each contain 20 female, (G1) treated with 2mg/kg /day suspension of silver nanoparticles (Ag NPs) (G2) treated with 20mg/kg/day AgNPs from first da
... Show More