Background: Restoration of the gingival margin of Class II cavities with composite resin continues to be problematic, especially where no enamel exists for bonding to the gingival margin. The aim of study is to evaluate the marginal leakage at enamel and cementum margin of class II MOD cavities using amalgam restoration and modern composite restorations Filtek™ P90, Filtek™ Z250 XT (Nano Hybrid Universal Restorative) and SDR bulk fill with different restoratives techniques. Materials and method: Eighty sound maxillary first premolar teeth were collected and divided into two main groups, enamel group and cementum group (40 teeth) for each group. The enamel group was prepared with standardized Class II MOD cavity with gingival margin (1 mm above C.E.J) on both box sides. While the cementum group with the gingival margin (1 mm below C.E.J) on both sides. The enamel and cementum groups were then subdivided into eight subgroups for each (five teeth) with 10 boxes for each group. Subgroups within the main group named according to materials and techniques that were used with it as following: Amalgam subgroup (Permite, SDI), SDR subgroup (DENTSPLY) with bulk technique, Filtek™ P90 subgroup (3M ESPE) with three incremental techniques (Oblique, Horizontal and Centripetal technique), and Filtek™ Z250XT subgroup (3M ESPE) with three incremental techniques (Oblique, Horizontal and Centripetal technique).After specimens were stored in distilled water at 37°C for 7 days. All specimens were subjected to thermocycling at (5° to 55 °C). Microleakage was evaluated by stereomicroscope (20 X). Data were analyzed statistically by Kruskal-Wallis test and Mann-Whitney U-test. Result: All experimental groups showed leakage at cementum more than enamel groups. SDR bulk fill subgroup showed the highest marginal leakage among all experimental groups followed by Filtek™ Z250 XT subgroup with horizontal technique at both enamel and cementum groups. Silorane and Filtek™ Z250 XT subgroups with oblique technique showed the least marginal leakage followed by centripetal technique at both enamel and cementum groups. Amalgam restoration subgroup shows lesser leakage than SDR bulk fills subgroup significantly at both enamel and cementum groups. While it show higher leakage than Silorane subgroup with oblique technique significantly at enamel margin only. Conclusion: The limiting factors for marginal leakage are technique and material dependent.
The research aims to analyze the impact of exchange rate fluctuations (EXM and EXN) and inflation (INF) on the gross domestic product (GDP) in Iraq for the period 1988-2020. The research is important by analyzing the magnitude of the macroeconomic and especially GDP effects of these variables, as well as the economic effects of exchange rates on economic activity. The results of the standard analysis using the ARDL model showed a long-term equilibrium relationship, according to the Bound Test methodology, from explanatory (independent) variables to the internal (dependent) variable, while the value of the error correction vector factor was negative and moral at a level less than (1%). The relationship bet
... Show MoreThis study deals with the estimation of critical load of unidirectional polymer matrix composite plates by using experimental and finite element techniques at different fiber angles and fiber volume fraction of the composite plate.
Buckling analysis illustrated that the critical load decreases in nonlinear relationship with the increase of the fiber angle and that it increases with the increase of the fiber volume fraction.
The results show that the maximum value of the critical load is (629.54 N/m) at (q = 0°) and (Vf = 40 %) for the finite element method, while the minimum val
... Show MoreThe use of composite materials has vastly increased in recent years. Great interest is therefore developed in the damage detection of composites using non- destructive test methods. Several approaches have been applied to obtain information about the existence and location of the faults. This paper used the vibration response of a composite plate to detect and localize delamination defect based on the modal analysis. Experiments are conducted to validate the developed model. A two-dimensional finite element model for multi-layered composites with internal delamination is established. FEM program are built for plates under different boundary conditions. Natural frequencies and modal displacements of the intact and damaged
... Show MoreIn this paper, the static analysis for finding the best location of boxes inside the composite wing-box structure has been performed. A software ANSYS (ver.11) was used to analyses the Aluminum wing to find the maximum stresses reached in. These results are used as a base for the composite wingbox to find the numbers of layers and location of the box beam and its dimensions so that the composite wingbox may carry the same loading conditions in the Aluminum wing. Analysis showed that a composite wingbox having two boxes is better than the single or triple boxes wing based on stress to weight ratio. Mass saving of (40%) had been achieved when composite wing-box is used instead of Aluminum wing.
This contribution evaluates the influence of Cr doping on the ground state properties of SrTiO3 Perovskite using GGA-PBE approximation. Results of the simulated model infer agreement with the previously published literature. The modification of electronic structure and optical properties due to Cr3+ doping levels in SrTiO3 has been investigated. Structural parameters infer that Cr3+ doping alters the electronic structures of SrTiO3 by shifting the conduction band through lower energies for the Sr and Ti sites. Substituting Ti site by Cr3+ results the energy gap in being eliminated revealing a new electrical case of conducting material for the system. Furthermore, it has been noticed that Cr doping either at Sr or Ti positions could effectiv
... Show MoreThis research aims to improve the radiation shielding properties of polymer-based materials by mixing PVC with locally available building materials. Specifically, two key parameters of fast neutron attenuation (removal cross-section and half-value layer) were studied for composite materials comprising PVC reinforced with common building materials (cement, sand, gypsum and marble) in different proportions (10%, 30% and 50% by weight). To assess their effectiveness as protection against fast neutrons, the macroscopic neutron cross-section was calculated for each composite. Results show that neutron cross-section values are significantly affected by the reinforcement ratios, and that the composite material PVC + 50% gypsum is an effect
... Show MoreLandfill and incineration are the most common and widely used methods to dispose of solid wastes; both of these techniques are considered the main sources of pollution in the world due to the harmful toxic emissions that are considered an environmental problem. Because of the large areas used by landfills, they are not always considered an economical method. With the increase in the production of solid materials, solid wastes increase the pressure on incinerators and landfills, making the environmental pollution hazard more serious. Instead, these waste materials can be used in some other applications. One of the most important of these applications is asphalt pavements, which are the most used types of pavements in the
... Show MoreThe change in project cost, or cost growth, occurs from many factors, some of which are related to soil problem conditions that may occurs during construction and/or during site investigation period. This paper described a new soil improvement method with a minimum cost solution by using polymer fiber materials having a length of (3 cm) in both directions and (2.5 mm) in thickness, distributed in uniform medium dense .
sandy soil at different depths (B, 1.5B and 2B) below the footings. Three square footings has been used (5,7.5 and 10 cm) to carry the above investigation by using lever arm loading system design for such purposes.
These fibers were distributed from depth of (0.1B) below the footing base down to the investigated dep
Ultra-High Temperature Materials (UHTMs) are at the base of entire aerospace industry; these high stable materials at temperatures exceeding 1600 °C are used to manage the heat shielding to protect vehicles and probes during the hypersonic flight through reentry trajectory against aerodynamic heating and reducing plasma surface interaction. Those materials are also recognized as Thermal Protection System Materials (TPSMs). The structural materials used during the high-temperature oxidizing environment are mainly limited to SiC, oxide ceramics, and composites. In addition to that, silicon-based ceramic has a maximum-use at 1700 °C approximately; as it is an active oxidation process o