Background: The combination of thermoplastic nylon resin materials and auto polymerizing resin is necessary in some situation for repair and adjustment. This study evaluated shear bond strength between thermoplastic nylon material (flexible) and auto polymerizing acrylic resin subjected to holes and silica coated layer. Materials and Method: Forty five (45) specimens were prepared from flexible acrylic bonded to auto-polymerizing acrylic resin and divided into three groups according to the surface treatments as follows: Group A: 15 specimens of flexible acrylic bonded with cold-cure acrylic by holes. Group B: 15 specimens of flexible acrylic bonded with cold-cure acrylic by silica coated layer. Group C: 15 specimens of flexible acrylic bonded with cold-cure acrylic by combination of holes and silica coated layer. All specimens were analyzed by using Instron testing machine. Results: The result of this study showed that high mean values were obtained from group C (combination) while low mean values were obtained from B (silica coated layer). Conclusion: It can be concluded that combination of mechanical surface treatment resulted in significant improvement in shear bond strength of flexible acrylic bonded with cold cure acrylic
The present work aims to fabricate n-i-p forward perovskite solar cell (PSC) withئ structure (FTO/ compact TiO2/ compact TiO2/ MAPbI3 Perovskite/ hole transport layer/ Au). P3HT, CuI and Spiro-OMeTAD were used as hole transport layers. A nano film of 25 nm gold layer was deposited once between the electron transport layer and the perovskite layer, then between the hole transport layer and the perovskite layer. The performance of the forward-perovskite solar cell was studied. Also, the role of each electron transport layer and the hole transport layer in the perovskite solar cell was presented. The structural, morphological and electrical properties were studied with X-ray diffractometer, field emission s
... Show MoreBackground: The purpose of this study was to evaluate the effect of addition of surface treated silicon dioxide Nano filler (SiO2) on some properties of heat cured acrylic resin denture base material (PMMA). The properties were impact strength, transvers strength, and surface hardness. Materials and methods: In addition to controlled group SiO2 powder was added to PMMA powder by weight in three different percentages 3%, 5% and 7%, mixed by probe ultra-sonication machine.120 specimens were constructed and divided into 3 groups according to the test (each group consist of 40 specimens) and each group was subdivided into 4 sub-groups according to the percentage of added SiO2 (finally each subgroup consist of 10 specimens). The tests conducte
... Show MoreIn the present work effect of recycled heating and cooling on the values of concrete compressive strength due to high temperature of 4000C was studied.
The tests show that the percent of reduction in compressive strength of the samples which exposed to a temperature of 4000C for one cycle was 32.5%, while the reduction was 52.7% for the samples which were exposed to recycled heating and cooling of ten times .
Moreover a study of the effect of specimen sizes on the percentages of compressive strength reduction due to high temperature
... Show MoreStaphylococcus aureus is a common pathogenic agent due to its ability to cause various types of infections, ranging from mild skin infections to sever systemic diseases. One of the most virulence factors of this bacterium is its ability to from biofilms on solid surfaces by anchoring the planktonic cells and by producing a protective layer of extra polymeric substances. Biofilm formation is controlled through many genes. The most important ones are icaA and icaD. Dentures are prosthetic devices that are made of different materials to replace lost teeth. The aim of this study is to examine the ability of different types of denture materials to support the biofilm formation of S. aureus at phenotypic level by detecting ba
... Show MoreBackground: This study was aimed to investigate the effect of three lingual button (Nickel free / rectangular base, Nickel free / round base and Composite) and bonding environment, wet and dry enamel surface, on: the shear bond strength (SBS) of light and self-cured Resin Modified Glass Ionomer Cements, and the debonding failure sites. Materials and method: One hundred twenty no-carious, free of cracks maxillary first premolar teeth were selected. Three types of orthodontic lingual buttons were used in this study: Nickel free / rectangular base, Nickel free / round base and Composite buttons. The teeth were divided into two groups of sixty teeth each. One group was used for testing the chemically cured GC Fuji Ortho Resin modified Glass Io
... Show MoreBackground: Poly (methylmethacrylate) is not ideal in every aspect and has disadvantages such as insufficient surface hardness, increase water sorption and poor impact resistance and the latter being the primary cause of fracture of denture base resins. The aim of this study was to evaluate the effect of addition of silanized nano- hydroxyapatite (HA) on some properties of heat cured acrylic denture base material. Materials and methods: HA nano particles were first silanized with ï§MPS (tri methacryloxypropyletrimethoxy silane coupling agent) then ultrasonicated with methylmethacrylate (monomer) to disperse agglomerated nano particles and mixed with polymer. 2% by wt of HA nano particles was selected as the best concentration that add
... Show MoreBackground: One of the most common complications of dentures is its ability to fracture, so the aim of this study was to reinforce the high impact denture base with carbon nanotubes in different concentrations to improve the mechanical and physical properties of the denture base. Materials and methods: Three concentrations of carbon nanotubes was used 0.5%, 1%, 1.5% in a pilot study to see the best values regarding transverse strength, impact, hardness and roughness test, 1 wt% was the best concentration, so new samples for control group and 1wt% carbon nanotubes and the previous tests were of course repeated. Results: There was a significant increase in impact strength and transverse strength when we add carbon nanotubes in 1wt%, compared
... Show MoreIn this study, aluminum alloyAA6061-T6 was joined by a hot press process with three types of material; polyamide PA 6.6 (nylon), 1% carbon nanotube/PA6.6 and 30% carbon fiber/PA6.6 composites. Three parameters were considered in the hot pressing; temperature (180, 200 and 220°C), pressure (2, 3, 4, 5 and 6 bar) and time of pressing (1, 2, 3, 4 and 5 minutes for 200ºC, and 0.25, 0.5, 0.75, 1 and 1.25 minutes for220ºC). Applied pressure has great effect on shear strength of the joint, corresponding to bonding time and temperature. Maximum shear strength was 8.89MPa obtained for PA6.6 at bonding conditions of 4 bar, 220ºC and 0.75 minute. For 30% carbon fiber/PA6,6 shear recorded was