Background: White spot lesions (WSLs) are subsurface enamel demineralization manifested as white opacities which had an esthetic problem. The purpose of this in-vitro study was to evaluate the lesion depth improvement of WSLs following application of fluoride varnish, tooth mousse and resin infiltration (ICON). Materials and methods: Artificial WSLs were created on 120 premolar teeth using demineralization solution with pH (4-4.5). Samples randomly allocated into four groups; fluoride varnish, tooth mousse, ICON and untreated group. Groups were discolored in Cola and orange juice for 24 hours. Teeth were ground sectioned by longitudinal cutting then these sections examined and photographed under stereomicroscope at 12X magnification then analyzed for lesion depth measurements using Image Pro Plus computer software to record the average lesion depth (μm). Results: The mean values of lesion depth for WSLs groups in DDW, Cola and orange juice increased after formation of WSLs then decreased with the fluoride varnish, tooth mousse and ICON. There was a statistically significant difference between the WSLs, fluoride and Mousse group in DDW and Cola, while there was no statistically significant effect of ICON on WSL in DDW (p=0.341)and Cola (p=0.210). Conclusions: Formation of WSLs is associated with significant lesion depth changes and the use of fluoride varnish, tooth mousse and ICON could return minerals or resin to subsurface enamel of WSLs and improve lesion depth in different soft drinks.
In this study, Laser Shock Peening (LSP) effect on the polymeric composite materials has been investigated experimentally. Polymeric composite materials are widely used because they are easy to fabricate and have many attractive features. Unsaturated polyester resin as a matrix was selected and Aluminum powder with micro particles as a reinforcement material was used with different volume fraction (2.5%, 5% and 7.5%). Hand lay-up process was used for preparation the composites. Fatigue test with constant amplitude with stress ratio (R =-1) was carried out before and after LSP process with two levels of energy (1Joule and 2Joule). The result showed an increase in the endurance strength of 25.448% at 7.5% volume fraction when peened is 1J
... Show MoreThis research studies the effect of addition of some nanoparticles
(MgO, CuO) and grain size (30,40nm) on some physical properties
(impact strength, hardness and thermal conductivity) for a matrix
blend of epoxy resin with SBR rubber. Hand –Lay up method was
used to prepare the samples. All samples were immersed in water for
9 weeks.
The Results showed decreased in the values of impact strength and
hardness but increased the coefficient of thermal conductivity.
The marine collagens are biocompatible and biodegradable materials that are considered as a biomimetic approach for tissue regeneration. This study evaluated the effect of daily consumption of marine collagen supplement drink on enamel white spot lesions (WSLs), comparing the results against Regenerate system and Sylc air abrasion methods. Fifty human enamel slabs were allocated into five groups (n = 10 per group): non-treated (sound); non-treated (WSLs, 8% methylcellulose gel with 0.1 M lactic acid (pH 4.6) at 37 °C for 21 days); and three treated surfaces with marine collagen; Regenerate system; and Sylc air abrasion. The treatment lasted for 28 days followed by four weeks’ storage in artificial saliva (pH = 7.0, 37 °C). Evalu
... Show MoreThe aim of this study was to identify the depth of the mouth and its shape in some local fish belonging to the Cyprinidae family, and the extent to which the depth of the mouth is related to the way of feeding and the nature of food as well as the feeding habits of those species collected specifically from the Tigris River, the results showed a relationship of depth oral cavity with head length was highly significant at (P < 0.01) for all studied species. Also, there was a highly significant relationship between the height of the pharyngeal tooth-bearing bone and the depth of the oral cavity for fish of this local family.
Background: Poly (methylmethacrylate) is not ideal in every aspect and has disadvantages such as insufficient surface hardness, increase water sorption and poor impact resistance and the latter being the primary cause of fracture of denture base resins. The aim of this study was to evaluate the effect of addition of silanized nano- hydroxyapatite (HA) on some properties of heat cured acrylic denture base material. Materials and methods: HA nano particles were first silanized with ï§MPS (tri methacryloxypropyletrimethoxy silane coupling agent) then ultrasonicated with methylmethacrylate (monomer) to disperse agglomerated nano particles and mixed with polymer. 2% by wt of HA nano particles was selected as the best concentration that add
... Show MoreAutorías: Wafaa Sabah Mohammed Al-Khafaji, Fatimah Hameed Kzar Al-Masoodi, Suadad Ibrahim Suhail Al-Kinani. Localización: Revista iberoamericana de psicología del ejercicio y el deporte. Nº. 3, 2023. Artículo de Revista en Dialnet.
Background: The microhardness of a composite resin is a vital parameter that is used to determine its clinical behavior. Measuring the microhardness of a composite resin has been used as an indirect method to assess its degree of conversion and extent of polymerization. The purpose of this in vitro study was to evaluate the effect of three curing distances (0, 2, and 4 mm) on the microhardness of the top and bottom surfaces of three types of flowable bulk-fill composite resins (smart dentin replacement, Opus bulk fill flow, and Tetric N). Material and method: Sixty-three specimens from the three types of composite resins (n=21) were fabricated using Teflon mold with a 4mm depth and a 5 mm internal diameter and cured for 20 seconds. For e
... Show MoreThis study evaluates the advantages of employing nano-hydroxyapatite in dentistry, particularly for preventive treatment applications. Only electronically published papers were searched within this review. Sources: "PubMed" website was the only source used to search for data. 92 most relevant papers to the topic were selected, especially the original articles and review papers, from 1990 till the 1st of April 2022. The morphology of nano-hydroxyapatite, as well as the structure of its crystals, are close to that of dental enamel. As a result, hydroxyapatite can biomimetically replace the natural enamel mineral element. Keywords: remineralization of enamel, nanotechnology, nanohydroxyapatite, hypersensitivity.