Background: Wound healing is a complex dynamical interaction between various cell types, the extracellular matrix, cytokines, and growth factors. osteoponetin is a substance that acts as an anti-inflammatory. Aims of study: The study was designed to identify the role of local exogenous applications of osteopontin on wound healing (in cheek skin). Materials and methods: Thirty adult male albino rats weighting an average of (250-300gm) used in this study, incisional wounds were made in the skin of the cheek of rat and they were divided into the following groups: A-Control group: 15 rats treated with 1µ l of normal saline B-Experimental groups: 15 rats treated with topical application of 1µl osteopontin. The scarification of animals were done for the healing intervals (1, 5 and 10 days) Histological analysis and assessment of number of inflammatory cell, Thickness and contraction of incision were performed for both experimental and control groups for all healing periods. Results: Histological analysis revealed that osteopontin accelerate wound healing of cheek skin and there was highly significant difference among studied groups in periods 1,5,10 days. Regarding mean values of epithelial thickness, inflammatory cell count and contraction of wound area have reported a highest value different in 1, 5 and 10 days durations. Conclusion: It can be concluded that application of osteopontin shown efficacy in the healing of skin wounds induced in rats.
A field experiment was conducted during the autumn of 2021 at the Agricultural Research Department station / Abu Ghraib to evaluate the soil moisture, water potential distribution, and growth factors of maize crops under alternating and constant partial drip irrigation methods. In the experiment, two irrigation systems were used, surface drip irrigation (DI) and subsurface irrigation (SD); under each irrigation system, five irrigation methods were: conventional irrigation (CI), and 75 and 50% of the amount of water of CI of each of the alternating partial irrigation APRI75 and APRI50 and the constant partial irrigation FPRI75 and FPRI50 respectively. The results showed that the water depth for conventional irrigation (C1) was 658.3
... Show MoreObliquely deposited (70o) Bi, Sb, and Bi-Sb alloy thin films have been prepared by thermal
resistive technique. Structural properties of these films were studied using XRD. Their resistance and
voltage responsivity for Nd:YAG and CO2 laser pulses have been recorded as function of operating
temperature between 10 oC and 120 oC. It was found that the maximum responsivity for these detectors
can be obtained at 75 oC. On the other hand, the dependence of responsivity on the width of detectors was
investigated.
The aim of this work is to evaluate some mechanical and physical
properties (i.e. the impact strength, hardness, flexural strength,
thermal conductivity and diffusion coefficient) of
(epoxy/polyurethane) blend reinforced with nano silica powder (2%
wt.). Hand lay-up technique was used to manufacture the composite
and a magnetic stirrer for blending the components. Results showed
that water had affected the bending flexural strength and hardness,
while impact strength increased and thermal conductivity decreased.
In addition to the above mentioned tests, the diffusion coefficient
was calculated using Fick’s 2nd law.
Some structures such as tall buildings, offshore platforms, and bridge bents are subjected to lateral loads of considerable magnitude due to wind and wave actions, ship impacts, or high-speed vehicles. Significant torsional forces can be transferred to the foundation piles by virtue of eccentric lateral loading. The testing program of this study includes one group consists of 3 piles, four percentages of allowable vertical load were used (0%, 25%, 50%, and 100%) with two L/D ratios 20 and 30, vertical allowable load 110 N for L/D = 20 and 156 N for L/D = 30. The results obtained indicate that the torsional capacity for pile group increases with increasing the percentage of allowable vertical load, when the percentage of allowable vertica
... Show Moreالخلاصة
تتناول هذه الورقة مخططات وسياسات الاستيطان في الضفة الغربية والقدس الشرقية منذ العام 1967، عبر سياسات قادها حزب العمل وأكملها حزب الليكود وكاديما وبقية الأحزاب الإسرائيلية، تلك السياسات التي استهدفت فرض السيطرة السياسية الكاملة على الأرض، وما نتج عن ذلك من سيطرة حصرية على الأرضوتقييد استخداماتها، ومحاصرة الوجود الفلسطيني والتضييق عليه، وتحويل مراكز ال
... Show MorePure grade II titanium disks were coated with a thin coating of polyetherketoneketone (PEKK) polymer by RF magnetron sputtering using either nitrogen or argon gas. Sputtering technique was employed at 50 W for one hour at 60°C with continuous flow of nitrogen or argon gas. Field-emission scanning electron microscopy (FE-SEM) showed a continuous, homogeneous, rough PEKK surface coating without cracks. In addition, cross-sectional FE-SEM revealed an average coat thickness of 1.86 μm with argon gas and 1.96 μm with nitrogen gas. There was homogenous adhesion between the coating layer and substrate. The elemental analysis of titanium substrate revealed the presence of carbon, titanium, and oxygen. The RF magnetron sputtering with argon or ni
... Show MoreA tetradentate (N2O2) Schiff base (H2Ldfm) was successfully synthesized via condensation of curcumin / diferuloylmethane (dfm) and L-leucine amino acid (HL). There were three different methods that used for synthesizing H2Ldfm; (refluxing, grading, and fusion). Ten different metal complexes were also successfully synthesized by combination of the Schiff base (H2Ldfm) and 1,10-phenanthroline (phen) ligand to form a hexadentate (N4O2) mixed ligands (Ldfm , phen) with ten different metal salts (M) where{ M= Al(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Ag(I), Cd(II), Hg(II), and Pb(II)}. The molar ratio of reactants was (1:1:1) (M: H2Ldfm : phen). The new Schiff base and its new complexes were characterized by different physicochemical tec
... Show MoreIn this work magnetite/geopolymer composite (MGP) were synthesized using a chemical co-precipitation technique. The synthesized materials were characterized using several techniques such as: “X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), vibrating sample-magnetometer (VSM), field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), Brunauer–Emmett–Teller (BET) and Barrentt-Joyner-Halenda (BJH)” to determine the structure and morphology of the obtained material. The analysis indicated that metal oxide predominantly appeared at the shape of the spinel structure of magnetite, and that the presence of nano-magnetite had a substantial impact on the surface area and pore st
... Show More