Background: Poly (methyl methacrylate) has several disadvantages (poor mechanical properties) like impact and transverse strength. In order to overcome these disadvantages, several methods were used to strengthen the acrylic resin by using different fibers or fillers. This study was conducted to evaluate the effect of Plasma treatment of the fiber on mechanical properties Poly (methyl methacrylate) denture base material. Materials and methods: Specimens were prepared from poly methyl metha acrylic (PMMA) divided according to present of fiber into 4 groups (first group without fiber as control group, second group with Plasma treated polyester fibers, third group with Plasma treated polyamide fibers and fourth group Plasma treated combination of polyester and polyamide fibers. The samples to be treated with oxygen gas plasma Results: the results show that the highest mean values for all tests included in the study appeared in group IV (Plasma treated combination of polyester and polyamide fibers) except for the surface roughness test the highest mean values found in group III (Plasma treated polyamide fibers, and only polyamide fiber slight improved roughness and other group have no effect on surface roughness Conclusion The addition of plasma treated fiber ( polyester, polyamide and combination of both fiber) improve transverse, impact strength and hardness properties of denture base material and has no effect on surface roughness.
In this work polymeric composites were done from unsaturated polyester as a matrix reinforced with glass fiber type (E-glass) with two different volume fraction 20% & 40%. Fatigue tests showed that the number of fatigue cycles to failure limit for samples reinforced with uniform (woven Roving 0-90°) E-glass fiber and random (continuous fibers) with volume fraction 40% more than that for the same samples with volume fraction 20%. Also the fatigue results showed that the uniform samples failed with fatigue cycles more than that of random.
A polycrystalline PbxS1-x alloys with various Pb content ( 0.54 and 0.55) has been prepared successfully. The structure and composition of alloys are determined by X-ray diffraction (XRD), atomic absorption spectroscopy (AAS) and X-ray fluorescence (XRF) respectively. The X-ray diffraction results shows that the structure is polycrystalline with cubic structure, and there are strong peaks at the direction (200) and (111), the grain size varies between 20 and 82 nm. From AAS and XRF result, the concentrations of Pb content for these alloys were determined. The results show high accuracy and very close to the theoretical values. A photoconductive detector as a bulk has been fabricated by taking pieces of prepared alloys and polished chemic
... Show MoreThis research aims to investigate and evaluate a reactive powder concrete (RPC) cast using economical materials. Its mechanical properties were investigated and evaluated by studying the effects of using different cement and silica fume contents and locally steel fibers aspect ratios as reinforcement for this concrete. A compressive strength of about 155.2MPa, indirect tensile strength of 16.0MPa, modulus of elasticity of 48.7GPa, flexural strength of 43.5MPa, impact energy of 3294.4kN.m and abrasion loss 0.59% have been achieved for reinforced RPC contains 910 kg/m3 cement content, silica fume content 185 kg/m3 of cement weight and fiber volume fraction 2%. The water absorption values w
... Show MoreThe present studies are focused on the modification of the properties of epoxy resin with different additives namely aluminum, copper by preparing of composites systems with percentage (20%, 40% and 50%) of the above additives. The experimental results show that the D.C of conductivity on wt% filler content at ( 293-413 ) K electrical conductivity of all above composites increased with temperature for composites with filler contact and find the excellent electrical conductivity of copper and lie between (2.6*10-10 - 2.1*10-10)?.cm . The activation energy of the electrical conductivity is determined and found to decrease with increasing the filler concentration.
The printed circuit heat exchanger is a plate type heat exchanger with a high performance and compact size. Heat exchangers such as this need a unique form of bonding and other techniques to be used in their construction. In this study, the process of joining plates, diffusion bonding, was performed and studied. A special furnace was manufactured for bonding purposes. The bonding process of copper metal was carried out under specific conditions of a high temperature up to 700 oC, high pressure of 3.45 MPa, and in an inert environment (Argon gas) to make tensile samples. The tensile samples are cylindrical shapes containing groves representing the flow channels in the printed circuit heat exchanger and checking their tensile st
... Show MoreThis study was conducted in the field of the Poultry Research Station of the Department of Animal Production / Department of Agricultural Research / Ministry of Agriculture for the period 4/4/2021 to 16/5/2021, in which 300 one-day-old Ross308 chicks that fed on diets used avocado oil and Chia with percentages 0, 0.2, 0.4, 0.6% respectively, and their mixture consisting of 0.0, 0.1, 0.2, 0.3 each of avocado and Chia oil (50% avocado + 50% Chia oil). The experiment included 4 treatments with 3 replicates for each treatment (10 birds/replicates), in order to study the effect of using avocado and chia oil and their mixture in meat broiler diets on some physiological and microbial characteristics of blood plasma. The results indicate a
... Show MoreAcrylic polymer/cement nanocomposites in dark and light colors have been developed for coating floors and swimming pools. This work aims to emphasize the effect of cement filling on the mechanical parameters, thermal stability, and wettability of acrylic polymer. The preparation was carried out using the casting method from acrylic polymer coating solution, which was added to cement nanoparticles (65 nm) with weight concentrations of (0, 1, 2, 4, and 8 wt%) to achieve high-quality specifications and good adhesion. Maximum impact strength and Hardness shore A were observed at cement ratios of 2 wt% and 4 wt%, respectively. Changing the filling ratio has a significant effect on the strain of the nanocomposites. The contact angle was i
... Show MoreBackground The application of nanotechnology to biomedical surfaces is explained by the ability of cells to interact with nanometric features. The aim of this study was to consider the role of nanoscale topographic modification of CPTi dental implant using chemical etching method for the purpose of improving osseointegration. Materials and methods: Commercial pure titanium rod was machined into 20 dental implants. Each implant was machined in diameter about 3mm, length of 8mm (5mm was threaded part and 3mm was flat part). Implants were prepared and divided into 2 groups according to the types of surface modification method used: 1st group (10 implant) remained without nano surface modification (control), 2nd group include (10 implant) etche
... Show MoreEfficacy of Several Forms of Storage Medium on Avulsed Teeth's Enamel Surface Roughness (An in Vitro Study), Rawaa Sadiq Obeid1*, Muna Saleem Khalaf2