Background: The longevity of any prosthesis depends on the materials from which it was fabricated, that is why, defects in the material properties may reduce the service life of prosthesis and necessitate its replacement. The aim of this study was to evaluate the effect of adding different concentrations of Polyamide-6 (Nylon-6) on the tear and tensile strength of A-2186 RTV silicone elastomer. Materials and Methods: 80 samples were fabricated by the addition of 0%, 1%, 3% and 5% by weight PA-6 micro-particles powder to A-2186 platinum RTV silicone elastomer. The study samples were divided into four (4) groups, each group containing 20 samples. One control group was prepared without PA-6 micro particles and three experimental groups were prepared with different percentage of PA-6 micro particles (1%, 3%, and 5%) by weight. Each group was further subdivided into 2 groups according to the conducted tests, i.e. tear and tensile strength tests (n=10). The data were analyzed with a descriptive statistical analysis, one-way ANOVA, post-hoc LSD test. Results: The mean value of tear and tensile strength of 1% PA-6 reinforcement group increased significantly when compared to control group on the contrast to the same values of 3% and 5% PA-6 reinforcement groups which were decreased significantly. Conclusion: the 1% PA-6 reinforcement improved tear as well as tensile strength among all other percentages (0%, 3% and 5%).
This study presents a comprehensive set of laboratory works for the examined soil layers extracted from Baghdad city (specifically from Alkadhimya, Alaitaifiya, and Alhurriya) to illustrate their engineering properties. The researchers have adopted the unified soil classification system for soil classification purposes. Also, the direct shear test was performed for soil samples with various degrees of saturation (0%, 25%, 50%, 75%, and 100%). The test results have shown a significant reduction in cohesion property with higher moisture content within soil samples. Also, a noticeable reduction in angle of internal friction value has occurred with such changes. Furthermore, it has been found that the bearing capacity of unsaturated soi
... Show MoreFacial trauma in children and adolescents is reported to range from 1% to 30%. Because of many anatomical, physiological, and psychological characteristics of the pediatric population, maxillofacial injuries in children should be treated with special consideration that is attributable to certain features inherent in facial growth patterns of children. This study evaluated maxillofacial injuries in 726 children in terms of incidence, patterns of injury, causes, and treatment modalities and compared these parameters among 3 pediatric age groups. Intergroup differences were analyzed using Z test for 2 populations' proportion. The results showed that the incidence of pediatric maxillofacial injuries and fractures is higher than that reported el
... Show MoreIn this work, the effect of aluminum (Al) dust particles on the DC discharge plasma properties in argon was investigated. A magnetron is placed behind the cathode at different pressures and with varying amounts of Al. The plasma temperature (Te) and density (ne) were calculated using the Boltzmann equation and Stark broadening phenomena, which are considered the most important plasma variables through which the other plasma parameters were calculated. The measurements showed that the emission intensity decreases with increasing pressure from 0.06 to 0.4 Torr, and it slightly decreases with the addition of the NPs. The calculations showed that the ne increased and Te decreased with pressure. Both Te and ne were reduced by increasing
... Show MoreIn this study, geopolymer mortar was designed in various experimental combinations employing 1% micro steel fibers and was subjected to different temperatures, according to the prior works of other researchers. The geopolymer mortar was developed using a variety of sustainable material proportions (fly ash and slag) to examine the influence of fibers on its strength. The fly ash weight percentage was 50%, 60%, and 70% by slag weight to study its effect on the geopolymer mortar's properties. The optimal ratio produced the most significant results when mixed at a 50:50 ratio of fly ash and slag with 1% micro steel fibers at curing temperature 240oC for 4 hours through two days. The compressive strength of the geopolymer mortar increas
... Show MoreThe cement slurry is a mixture of cement, water and additives which is established at the surface for injecting inside hole. The compressive strength is considered the most important properties of slurry for testing the slurry reliability and is the ability of slurry to resist deformation and formation fluids. Compressive strength is governed by the sort of raw materials that include additives, cement structure, and exposure circumstances. In this work, we use micro silica like pozzolanic materials. Silica fume is very fine noncrystalline substantial. Silica fume can be utilized like material for supplemental cementations for increasing the compressive strength and durability of cement. Silica fume has very fine particles size less
... Show MoreSelf- curing is the potential of lightweight aggregate to absorption great amount of water thru mixing which prominently can moves to the paste during hydration process. Self- curing empowers a water to be distributes more evenly act out the cross section. Whereas, the external curing water is only able to penetrate several millimetres into concrete with low water cement ratio. Brick dust accumulates in the demolish site creates serious environmental contamination. This study investigates the effect of brick dust recovered from construction site on the Properties of mortar cured in three curing conditions. Mortar in this study produced using BD as cement additive with (2, 4, 6, and 8) % by weight of cement. BD was used a
... Show MoreIn this work a hybrid composite materials were prepared containing matrix of polymer (polyethylene PE) reinforced by different reinforcing materials (Alumina powder + Carbon black powder CB + Silica powder). The hybrid composite materials prepared are: • H1 = PE + Al2O3 + CB • H2 = PE + CB + SiO2 • H3 = PE + Al2O3 + CB + SiO2 All samples related to electrical tests were prepared by injection molding process. Mechanical tests include compression with different temperatures and different chemical solutions at different immersion times The mechanical experimentations results were in favour of the samples (H3) with an obvious weakness of the samples (H1) and a decrease of these properties with a rise in temperature and the increasing
... Show MoreSand dunes are spread in multiple places in the world especially in a desert area as a result of economic development and construction processes, there was a need to study the behavior of sand dunes and make it suitable for construction. This paper aims to study the effect of adding sodium silicate on the cohesion strength of sand dune and its behavior. The results show that the cohesion strength increase as a percentage of sodium silicate increase (addition 8% Sodium silicate show the higher cohesion) and the cohesion between sand dune particles increase excepted when using 10% sodium silicate the cohesion began to decrease. However, the effect of curing time is significant and shows