Background: The success and maintenance of indirect dental restorations is closely related to the marginal accuracy, which is affected by many factors like preparation design, using of different fabrication techniques, and the time of taking final impression and pouring it. The purpose of this in vitro study was to evaluate the effect of different pouring time of conventional impression on the vertical marginal gap of full contour zirconia crowns in comparison with digital impression technique. Materials and Methods: Forty sound recently extracted human permanent maxillary first premolar teeth of comparable size and shape were collected. Standardized preparation of all teeth samples were carried out to receive full contour zirconia crown restoration with deep chamfer finishing line all around the tooth with (1mm) depth, axial length (4mm) and convergence angle (6 degree). The specimens separated into two groups; Group A; eight specimens were scanned digitally by using Omnicam scanner; Group B; conventional impressions were taken for the remaining thirty two specimens and further subdivided to four groups according to the time of impression pouring; Group B1: PVS were poured after 30 minutes; Group B2: PVS were poured after 24 hours; Group B3: PVS were poured after 7 days; Group B4:PVS were poured after 14 days. Marginal discrepancy was measured at four points at each tooth surface. Sixteen points per tooth were measured using digital microscope at (180X) magnification. One-way ANOVA test and LSD test were carried out to see if there was any significant difference among the means of the conventional impression groups. Independent samples t-test was carried out to examine if there is any significant difference between digital and conventional impression technique. Results: group B2 had the least mean of marginal gap with statistically significant difference when compared to group B1 and statistically highly significant difference when compared to group B3 and B4. There was a statistically highly significant difference in the vertical marginal gap between digital impression technique and conventional impression. Conclusions: the pouring of conventional impression after 24 hours provides better marginal fit than other pouring time. The digital impression provides better marginal fit than conventional impression.
Copper oxide thin films were synthesized by using spray pyrolysis deposition technique, in the temperature around 400°C in atmosphere from alcoholic solutions. Copper (II) chloride as precursor and glass as a substrate. The textural and structural properties of the films were characterized by atomic force microscopy (AFM), X-ray diffraction (XRD). The average particle size determined from the AFM images ranged from 30 to 90 nm and the roughness average was equal to 9.3 nm. The XRD patterns revealed the formation of a polycrystalline hexagonal CuO. The absorption and transmission spectrum, band gap, film thickness was investigated. The films were tested as an |
Abstract :H.pylori is an important cause of gastric duodenal disease, including gastric ulcers, Mucosa-associated lymphoid tissue (MALT), and gastric carcinoma. biosensors are becoming the most extensively studied discipline because the easy, rapid, low-cost, highly sensitive, and highly selective biosensors contribute to advances in next-generation medicines such as individualized medicine and ultrasensitive point-of-care detection of markers for diseases. Five of ten patients diagnosed with H.pylori ranging in age from 15–85 participated in this research. who [gastritis, duodenitis, duodenal ulcer (DU), and peptic ulcer (PU)] Suspected H.pylori colonies w
... Show MoreThe pandemic SARS-CoV-2 is highly transmittable with its proliferation among nations. This study aims to design and exploring the efficacy of novel nirmatrelvir derivatives as SARS entry inhibitors by adapting a molecular modeling approach combined with theoretical design. The study focuses on the preparation of these derivatives and understanding their effectiveness, with a special focus on their binding affinity to the S protein, which is pivotal for the virus’s access to the host cell. Considering molecular docking aspects in the scope of a study on nirmatrelvir derivatives and S protein, dynamics simulations with 25 nanoseconds of their binding are explored. The study shows that these derivatives might work as effective antivi
... Show MoreThe meteorite with a single total mass of 630 gm as a visible meteorite has fallen on 22 March 2021, at 10:00 a.m. in Al-Sherqat subdistrict within Salah Al-Din, northern Iraq; and therefore, was named Al-Sherqat meteorite by the authors. It is characterized by a uniform structure of coherent and medium degree of malleability. It is of a well-crystalline structure and not homogeneous in composition. The Al-Sherqat meteorite is composed of metallic phases of 7.6 gm/cm3 density exhibiting an oriented intergrowth of kamacite (α-FeNi) with taenite showing a Widmanstätten pattern on an etched polished section with the finest octahedrite kamacite bandwidth of less than 0.2 mm. It is composed of Fe (86.9 wt%), Ni (9.63 wt%), P (1.31 wt%)
... Show MoreTrickle irrigation is a system for supplying filtered water and fertilizer directly into the soil and water and it is allowed to dissipate under low pressure in an exact predetermined pattern. An equation to estimate the wetted area of unsaturated soil with water uptake by roots is simulated numerically using the HYDRUS-2D/3D software. In this paper, two soil types, which were different in saturated hydraulic conductivity were used with two types of crops tomato and corn, different values of emitter discharge and initial volumetric soil moisture content were assumed. It was assumed that the water uptake by roots was presented as a continuous sink function and it was introduced into Richard's equation in the unsaturated z
... Show MoreA comparative study was done on the adsorption of methyl orange dye (MO) using non-activated and activated corn leaves with hydrochloric acid as an adsorbent material. Scanning electron microscopy (SEM) and Fourier Transform Infrared spectroscopy (FTIR) were utilized to specify the properties of adsorbent material. The effect of several variables (pH, initial dye concentration, temperature, amount of adsorbent and contact time) on the removal efficiency was studied and the results indicated that the adsorption efficiency increases with the increase in the concentration of dye, adsorbent dosage and contact time, while inversely proportional to the increase in pH and temperature for both the treated and untreated corn leav
... Show MoreInefficient wastewater disposal and wastewater discharge problems in water bodies have led to increasing pollution in water bodies. Pollutants in the river contribute to increasing the biological oxygen demand (BOD), total suspended solids (SS), total dissolved solids (TDS), chemical oxygen demand (COD), and toxic metals render this water unsuitable for consumption and even pose a significant risk to human health. Over the last few years, water conservation has been the subject of growing awareness and concern throughout the world, so this research focused on review studies of researches that studied the importance of water quality of wastewater treated disposal in water bodies and modern technology to management w
... Show MoreFourier Transform-Infrared (FT-IR) spectroscopy was used to analyze gasoline engine oil (SAE 5W20) samples that were exposed to seven different oxidation times (0 h, 24 h, 48 h, 72 h, 96 h, 120 h, and 144 h) to determine the best wavenumbers and wavenumber ranges for the discrimination of the oxidation times. The thermal oxidation process generated oil samples with varying total base number (TBN) levels. Each wavenumber (400–3900 cm−1) and wavenumber ranges identified from the literature and this study were statistically analyzed to determine which wavenumbers and wavenumber ranges could discriminate among all oxidation times. Linear regression was used with the best wavenumbers and wavenumber ranges to predict oxidation time.
... Show More