Back ground : The transforming growth factor beta (TGFB) signaling pathway is involved in many cellular processes in both the adult organism and the developing embryo including cell growth, cell differentiation, apoptosis. The interaction between implant material and surrounding tissues is believed to play a fundamental role in implant success and illustrates different expression of growth factors by different cells that involved in the formation of peri-implant tissue. The aim of this study was to localize expression of TGF B by newly formed bone tissue around surface-conditioned implants with placental collagen at different time intervals: 3 ,7,14,28, and 56 days . Materials and Methods: Commercially pure Titanium (CPTi) implants coated with collagen protein were placed in the tibia of 20 new Zealand rabbits . Immunohistochemical study for localization of TGF B in peri –implant tissue for interval periods 3 ,7,14,28, and 56 days was performed under light microscope.. Results: Positive expression of Transforming growth factor B can be detected in osteoblast, osteocyte, newly deposited matrix includes collagenous tissue and non mineralized osteoid tissue. Endothelial cells line blood vessel showed positivity too. Minerlized bone trabeculae and mature bone illustrate negative expression. Conclusion: The present study suggests that placental collagen, coated Ti implant illustrates positive expression of transforming growth factor B by osteoblast and endothelial cell that enhanced bone formation.
In this study new derivatives of O-[2-{''2-Substituted Aryl (''1,''3,''4 thia diazolyl) ['3,'4b]-'1,'2,'4- Triazolyl]-Ethyl]-p- chlorobenzald oxime (6-11) have been synthesized from the starting material p-chloro – E- benzaldoxime 1. Compound 2 was synthesized by the reaction of p-chloro – E- benzaldoxime with ethyl acrylate in basic medium. Refluxing compound 2 with hydrazine hydrate in ethanol absolute afforded 3. Derivative 4 was prepared by the reaction of 3 with carbon disulphide, treated of compound 4 with hydrazine hydrate gave 5. The derivatives (6-11) were prepared by the reaction of 5 with different substitutes of aromatic acids. The structures of these compounds were characterized from their melting points, infra
... Show MoreAzo ligand 11-(4-methoxyphenyl azo)-6-oxo-5,6-dihydro-benzo[4,5] imidazo[1,2-c] quinazoline-9-carboixylic acid was derived from 4-methoxyaniline and 6-oxo-5,6-dihydro-benzo[4,5]imidazo[1,2-c]quinazoline-9-carboxylic acid. The presence of azo dye was identified by elemental analysis and spectroscopic methods (FT-IR and UV-Vis). The compounds formed have been identified by using atomic absorption in flame, FT.IR, UV-Vis spectrometry magnetic susceptibility and conductivity. In order to evaluate the antibacterial efficiency of ligand and its complexes used in this study three species of bacteria were also examined. Ligand and its complexes showed good bacterial efficiencies. From the obtained data, an octahedral geometry was proposed for all p
... Show MoreTwo local fish Himri Carasobarbus luteus (Heckel, 1843) and Hishni Liza abu (Heckel, 1843) were stained with Alizarin Red and featured some anatomical qualities which cleared the difference of the muscular and skeletal fabric for each fish. Since clear Histologic differences appeared in these two species, it was intended from this study the possibility of adopting a diagnosis between local fish species by staining bones and tissues.
Limitations of the conventional diagnostic techniques urged researchers to seek novel methods to predict, diagnose, and monitor periodontal disease. Use of the biomarkers available in oral fluids could be a revolutionary surrogate for the manual probing/diagnostic radiograph. Several salivary biomarkers have the potential to accurately discriminate periodontal health and disease. This study aimed to determine the diagnostic sensitivity and specificity of salivary interleukin (IL)‐17, receptor activator of nuclear factor‐κB ligand (RANKL), osteoprotegerin (OPG), RANKL/OPG for differentiating (1) periodontal health from disease and (2) stable a
Compound 4-(((6-amino-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-3-yl)methoxy)methyl)- 2,6-dimethoxyphenol (6) was synthesized by multi steps. The corresponding acetonitrile thioalkyl (7) was cyclized by refluxing with acetic acid to afford 4-(((6-amino-7H-[1,2,4]triazolo[3,4- b][1,3,4]thiadiazin-3-yl)methoxy)methyl)-2,6-dimethoxyphenol (8). Two new series of 4-(((6-(3- (4-aryl)thioureido)-7H-[1,2,4]triazolo[3,4-b][1,3,4] thiadiazin-3-yl)methoxy)methyl)-2,6- dimethoxyphenol (9a-c) and of 4-(((6-(substitutedbenzamido)7H-[1,2,4]triazolo[3,4- b][1,3,4]thiadiazin-3-yl)methoxy)methyl)-2,6-dimethoxyphenol (10a-c) were synthesized as new derivatives for fused 1,2,4-trizaole-thiadiazine(8). The antioxidants of newly compounds were evaluated by DPPH
... Show MoreIn this study new derivatives of O-[2-{''2-Substituted Aryl (''1,''3,''4 thiadiazolyl) ['3,'4-b]-'1,'2,'4- Triazolyl]-Ethyl]-p- chlorobenzald oxime (6-11)have been synthesized from the starting material p-chloro – E- benzaldoxime 1.Compound 2 was synthesized by the reaction of p-chloro – E- benzaldoxime with ethyl acrylate in basic medium. Refluxing compound 2 with hydrazine hydrate in ethanol absolute afforded 3. Derivative 4 was prepared by the reaction of 3 with carbon disulphide, treated of compound 4 with hydrazine hydrate gave 5. The derivatives (6-11) were prepared by the reaction of 5 with different substitutesof aromatic acids. The structures of these compounds were characterized from their melting points, infrared spectroscopy
... Show MoreCompound 4-(((6-amino-7H-[1, 2, 4] triazolo [3, 4-b][1, 3, 4] thiadiazin-3-yl) methoxy) methyl)-2, 6-dimethoxyphenol (6) was synthesized by multi steps. The corresponding acetonitrile thioalkyl (7) was cyclized by refluxing with acetic acid to afford 4-(((6-amino-7H-[1, 2, 4] triazolo [3, 4-b][1, 3, 4] thiadiazin-3-yl) methoxy) methyl)-2, 6-dimethoxyphenol (8). Two new series of 4-(((6-(3-(4-aryl) thioureido)-7H-[1, 2, 4] triazolo [3, 4-b][1, 3, 4] thiadiazin-3-yl) methoxy) methyl)-2, 6-dimethoxyphenol (9a-c) and of 4-(((6-(substitutedbenzamido) 7H-[1, 2, 4] triazolo [3, 4-b][1, 3, 4] thiadiazin-3-yl) methoxy) methyl)-2, 6-dimethoxyphenol (10a-c) were synthesized as new derivatives for fused 1, 2, 4-trizaole-thiadiazine (8). The antioxidant
... Show MoreCoupling reaction of 2-amino benzoic acid with the 8-hydroxy quinoline gave the azo ligand (H2L): 5-(2-benzoic acid azo )-8-hydroxy quinoline.Treatment of this ligand with some metal ions (CoII, NiII and CuII ) in ethanolic medium with a (1:2) (M:L) ratio yielded a series of neutral complexes with general Formula[M(HL)2],where: M=Co(II), Ni(II) and Cu(II), HL=anion azo ligand (-1).The prepared complexes were characterized using flame atomic absorption,FT-IR and UV-Vis spectroscopic methods as well as magnetic susceptibility and conductivity measurements.
. New Schiff base ligand 2-((4-amino-5-(3, 4, 5-trimethoxybenzyl) pyrimidin2-ylimino) (phenyl)methyl)benzoic acid] = [HL] was synthesized using microwave irradiation trimethoprim and 2-benzoyl benzoic acid. Mixed ligand complexes of Mn((ІІ), Co(ІІ), Ni(ІІ), Cu(ІІ), Zn(ІІ) and Cd(ІІ) are reacted in ethanol with Schiff base ligand [HL] and 8-hydroxyquinoline [HQ] then reacted with metal salts in ethanol as a solvent in (1:1:1) ratio. The ligand [HL] is characterized by FTIR, UV-Vis, melting point, elemental microanalysis (C.H.N), 1H-NMR, 13C-NMR, and mass spectra. The mixed ligand complexes are characterized by infrared spectra, electronic spectra, (C.H.N), melting point, atomic absorption, molar conductance and magnetic m
... Show More