Background: Because of the demands for aesthetic orthodontic appliances have increased, aesthetic archwires have been widely used to meet patient's aesthetic needs. The color stability of aesthetic archwires is clinically important, any staining or discoloration will affect patient’s acceptance and satisfaction. This study was designed to evaluate the color stability of different types of aesthetic archwires after immersion into different types of mouth washes. Materials and methods: Four brands of nickel titanium coated aesthetic arch wires: Epoxy coated (Orthotechnology and G&H) and Teflon coated (Dany and Hubit) were evaluated after 1 week, 3 weeks and 6 weeks of immersion into two types of mouthwashes (Listerine with alcohol and Listerine without alcohol). Color change measurements were performed by using spectrophotometer VITA Easyshade Compact according to the commission Internationale de I’Eclairage L*a*b* color space system. Results: The results of this study showed that there were highly significant differences in color change values among all brands of aesthetic archwires at various immersion media. On the other hand, a significant difference was found between Dany and Orthotechnology aesthetic archwires at 1 week immersion in distilled water. Listerine with alcohol mouthwash produced more color changes of aesthetic archwires and color change value increases with the time of immersion. Conclusions: All brands of aesthetic archwires showed different degrees of color changes but most of these changes were not visible or clinically acceptable.
Due to the continuous development in society and the multiplicity of customers' desires and their keeping pace with this development and their search for the quality and durability of the commodity that provides them with the best performance and that meets their needs and desires, all this has led to the consideration of quality as one of the competitive advantages that many industrial companies compete for and which are of interest to customers and are looking for. The research problem showed that the Diyala State Company for Electrical Industries relies on some simple methods and personal experience to monitor the quality of products and does not adopt scientific methods and modern programs. The aim of this research is to desi
... Show MoreThe aim of this paper is to design a PID controller based on an on-line tuning bat optimization algorithm for the step-down DC/DC buck converter system which is used in the battery operation of the mobile applications. In this paper, the bat optimization algorithm has been utilized to obtain the optimal parameters of the PID controller as a simple and fast on-line tuning technique to get the best control action for the system. The simulation results using (Matlab Package) show the robustness and the effectiveness of the proposed control system in terms of obtaining a suitable voltage control action as a smooth and unsaturated state of the buck converter input voltage of ( ) volt that will stabilize the buck converter sys
... Show More<p>Energy and memory limitations are considerable constraints of sensor nodes in wireless sensor networks (WSNs). The limited energy supplied to network nodes causes WSNs to face crucial functional limitations. Therefore, the problem of limited energy resource on sensor nodes can only be addressed by using them efficiently. In this research work, an energy-balancing routing scheme for in-network data aggregation is presented. This scheme is referred to as Energy-aware and load-Balancing Routing scheme for Data Aggregation (hereinafter referred to as EBR-DA). The EBRDA aims to provide an energy efficient multiple-hop routing to the destination on the basis of the quality of the links between the source and destination. In
... Show MoreWildfire risk has globally increased during the past few years due to several factors. An efficient and fast response to wildfires is extremely important to reduce the damaging effect on humans and wildlife. This work introduces a methodology for designing an efficient machine learning system to detect wildfires using satellite imagery. A convolutional neural network (CNN) model is optimized to reduce the required computational resources. Due to the limitations of images containing fire and seasonal variations, an image augmentation process is used to develop adequate training samples for the change in the forest’s visual features and the seasonal wind direction at the study area during the fire season. The selected CNN model (Mob
... Show MoreRecently emerging pandemic SARS CoV-2 conquered our world since December 2019. Continuous efforts have been done to find out effective immunization and precise treatment stetratigies A way from therapeutic options that were tried in SARS CoV-2, an increased attention is directed to predict natural products and mainly phytochemicals as collaborative measures for this crisis. In this review, most of the mentioned compounds specially flavonoids (biacalin, hesperidin, quercetin, luteolin,, and phenolic (resveratrol, curcumin, and theaflavin) exert their effect through interfering with the action of one or more of this proteins (spike protein, papain like protease, 3 chymotrypsin like cysteine protease, and RNA dependent RNA
... Show MoreThe growing use of tele
This paper presents a new secret diffusion scheme called Round Key Permutation (RKP) based on the nonlinear, dynamic and pseudorandom permutation for encrypting images by block, since images are considered particular data because of their size and their information, which are two-dimensional nature and characterized by high redundancy and strong correlation. Firstly, the permutation table is calculated according to the master key and sub-keys. Secondly, scrambling pixels for each block to be encrypted will be done according the permutation table. Thereafter the AES encryption algorithm is used in the proposed cryptosystem by replacing the linear permutation of ShiftRows step with the nonlinear and secret pe
... Show MoreThe rise of Industry 4.0 and smart manufacturing has highlighted the importance of utilizing intelligent manufacturing techniques, tools, and methods, including predictive maintenance. This feature allows for the early identification of potential issues with machinery, preventing them from reaching critical stages. This paper proposes an intelligent predictive maintenance system for industrial equipment monitoring. The system integrates Industrial IoT, MQTT messaging and machine learning algorithms. Vibration, current and temperature sensors collect real-time data from electrical motors which is analyzed using five ML models to detect anomalies and predict failures, enabling proactive maintenance. The MQTT protocol is used for efficient com
... Show More