Background: Because of the demands for aesthetic orthodontic appliances have increased, aesthetic archwires have been widely used to meet patient's aesthetic needs. The color stability of aesthetic archwires is clinically important, any staining or discoloration will affect patient’s acceptance and satisfaction. This study was designed to evaluate the color stability of different types of aesthetic archwires after immersion into different types of mouth washes. Materials and methods: Four brands of nickel titanium coated aesthetic arch wires: Epoxy coated (Orthotechnology and G&H) and Teflon coated (Dany and Hubit) were evaluated after 1 week, 3 weeks and 6 weeks of immersion into two types of mouthwashes (Listerine with alcohol and Listerine without alcohol). Color change measurements were performed by using spectrophotometer VITA Easyshade Compact according to the commission Internationale de I’Eclairage L*a*b* color space system. Results: The results of this study showed that there were highly significant differences in color change values among all brands of aesthetic archwires at various immersion media. On the other hand, a significant difference was found between Dany and Orthotechnology aesthetic archwires at 1 week immersion in distilled water. Listerine with alcohol mouthwash produced more color changes of aesthetic archwires and color change value increases with the time of immersion. Conclusions: All brands of aesthetic archwires showed different degrees of color changes but most of these changes were not visible or clinically acceptable.
This paper describes the problem of online autonomous mobile robot path planning, which is consisted of finding optimal paths or trajectories for an autonomous mobile robot from a starting point to a destination across a flat map of a terrain, represented by a 2-D workspace. An enhanced algorithm for solving the problem of path planning using Bacterial Foraging Optimization algorithm is presented. This nature-inspired metaheuristic algorithm, which imitates the foraging behavior of E-coli bacteria, was used to find the optimal path from a starting point to a target point. The proposed algorithm was demonstrated by simulations in both static and dynamic different environments. A comparative study was evaluated between the developed algori
... Show MoreIn this paper, we study some cases of a common fixed point theorem for classes of firmly nonexpansive and generalized nonexpansive maps. In addition, we establish that the Picard-Mann iteration is faster than Noor iteration and we used Noor iteration to find the solution of delay differential equation.
The prediction of the blood flow through an axisymmetric arterial stenosis is one of the most important aspects to be considered during the Atherosclrosis. Since the blood is specified as a non-Newtonian flow, therefore the effect of fluid types and effect of rheological properties of non-Newtonian fluid on the degree of stenosis have been studied. The motion equations are written in vorticity-stream function formulation and solved numerically. A comparison is made between a Newtonian and non-Newtonian fluid for blood flow at different velocities, viscosity and Reynolds number were solved also. It is found that the properties of blood must be at a certain range to preventing atheroscirasis
An optimization analysis of drilling process constitutes a powerful tool for operating under desired pressure levels and simultaneously maximizing the penetration rate, which reduces costs and time thus increases the profit.
In this study, a composite drilling model (Young-Bourgyen model) of eight functions was used to determine the optimum drilling mechanical parameters (Weight on bit and rotary speed) for an Iraqi oil field. These functions model the effect of most drilling parameters such as formation strength, mud density, formation compaction, weight on bit, rotary speed, tooth dullness, and bit hydraulic on drilling rate. Data are extracted from bit record and drilling report of well BUZ-20 for calculation of eight exponents of
In this research velocity of moving airplane from its recorded digital sound is introduced. The data of sound file is sliced into several frames using overlapping partitions. Then the array of each frame is transformed from time domain to frequency domain using Fourier Transform (FT). To determine the characteristic frequency of the sound, a moving window mechanics is used, the size of that window is made linearly proportional with the value of the tracked frequency. This proportionality is due to the existing linear relationship between the frequency and its Doppler shift. An algorithm was introduced to select the characteristic frequencies, this algorithm allocates the frequencies which satisfy the Doppler relation, beside that the tra
... Show MoreThis article co;nsiders a shrunken estimator ·Of Al-Hermyari· and
AI Gobuii (.1) to estimate the mean (8) of a normal clistributicm N (8 cr4) with known variance (cr+), when <:I guess value (So) av11il ble about the mean (B) as· an initial estrmate. This estimator is shown to be
more efficient tl1an the class-ical estimators especially when 8 is close to 8•. General expressions .for bias and MSE -of considered estitnator are gi 'en, witeh some examples. Nut.nerical cresdlts, comparisons and
conclusions ate reported.