Background: The displacement of artificial teeth during complete denture construction presents major processing errors in the occlusal vertical dimension which were verified at the previous trial denture stage. The aim of this study was to assess the effect of delay in processing after final flask closure and tension application on the vertical acrylic and porcelain teeth displacement of complete dentures constructed from heat cured acrylic and the results were compared with the conventional processing method. Materials and methods: forty samples of identical maxillary complete dentures were constructed from heat polymerized acrylic resin. These samples were subdivided into the following experimental subgroups in which each subgroup contains 5 samples for both acrylic and porcelain teeth and as follows: 1. Conventional flasking technique and immediate processing. 2. Conventional flasking technique and 6 hours delay in processing. 3. flasking technique with tension system and immediate processing. 4. flasking technique with tension system and 6 hours delay in processing. Reference metal pins were attached to the middle of the buccal surface of the upper right canine and center of the buccal groove of the left first molar. And according to these reference points on the teeth another metallic Reference pins were fixed on the denture vestibules and at a distance of 7.5mm by straight lines and 6.5mm where placed between the metal pins and the vestibules in order to standardize the measurement. The distance between the right and left metal pins on the canine and molars and the corresponding metal pins on the buccal vestibules were measured during the wax up stage and after processing by using an optical travelling microscope with an accuracy of 0.0005 mm. Means in (mm) were analyzed statistically by analysis of variance and the comparative T-test and least significance test (LSD). Results: Significant reduction in vertical displacement of the teeth occurred in groups when 6 hours delay in processing were applied, but a significant improvement was also observed in groups with tension system application when compared with control group. On the other hand, there were a high significant reduction in the vertical displacement in groups with tension system and 6 hours delay in processing combination. While for the type of artificial teeth data showed significant difference in the amount of vertical displacement of the teeth in groups with acrylic teeth when compared with porcelain teeth. Conclusions: The findings of this study showed that 6 hours delay in processing and tension system application were effective in reducing the vertical displacement of the artificial teeth during flasking. The maximum reduction in the displacement was observed in dentures constructed from acrylic teeth. On the other hand, significant decrease in vertical displacement of the teeth was detected in dentures constructed from porcelain teeth.
One of the principle concepts to understand any hydrocarbon field is the heterogeneity scale; This becomes particularly challenging in supergiant oil fields with medium to low lateral connectivity and carbonate reservoir rocks.
The main objectives of this study is to quantify the value of the heterogeneity for any well in question, and propagate it to the full reservoir. This is a quite useful specifically prior to conducting detailed water flooding or full field development studies and work, in order to be prepared for a proper design and exploitation requirements that fit with the level of heterogeneity of this formation.
In this work, the spectra of plasma glow produced by Nd:YAG laser operated at 1.064 μm on Al-Mg alloys with same molar ratio samples in air were analyzed by comparing the atomic lines of aluminum and magnesium with that of strong standard lines. The effect of laser energies on spectral lines, produced by laser ablation, were investigated using optical spectroscopy, the electron density was measured utilizing the Stark broadening of magnesium-aluminum lines and the electron temperature was calculated from the standard Boltzmann plot method. The results that show the electron temperature increases in magnesium and aluminum targets but decreases in magnesium: aluminum alloy target, also show the electron density increase all the aluminum,
... Show MoreAbstract
Paraffin wax is utilized for the heat storage applications taking advantage from the high stored latent heat during the phase change (from solid to fluid) period. What isn't right with this procedure is that the wax has a little heat transfer rate because of its low thermal conductivity. The thermal conductivity improvement of the paraffin wax has been examined utilizing nano-material with high thermal conductivity. In the recent study, (Al2O3) nanoparticles with weights of 1, 2, and 3% of the paraffin wax were added to the paraffin wax. The Iraqi paraffin wax accessible at the local markets was utilized as a phase change material (PCM).
Many properties of the
... Show MoreCarbon-fiber-reinforced polymer (CFRP) is widely acknowledged as a leading advanced material structure, offering superior properties compared to traditional materials, and has found diverse applications in several industrial sectors, such as that of automobiles, aircrafts, and power plants. However, the production of CFRP composites is prone to fabrication problems, leading to structural defects arising from cycling and aging processes. Identifying these defects at an early stage is crucial to prevent service issues that could result in catastrophic failures. Hence, routine inspection and maintenance are crucial to prevent system collapse. To achieve this objective, conventional nondestructive testing (NDT) methods are utilized to i
... Show MoreThe parameters of resistance spot welding (RSW) performed on low strength commercial aluminum sheets are investigated experimentally, the performance requirements and weldability issues were driven the choice of a specific aluminum alloy that was AA1050. RSW aluminum alloys has a major problem of inconsistent quality from weld to weld comparing with welding steel
alloys sheet, due to the higher thermal conductivity, higher thermal expansion, narrow plastic temperature range, and lower electrical resistivity. Much effort has been devoted to the study of describing the relation between the parameters of the process (welding current, welding time, and electrode force) and weld strength. Shear-tensile strength tests were performed to ind
This study uses an Artificial Neural Network (ANN) to examine the constitutive relationships of the Glass Fiber Reinforced Polymer (GFRP) residual tensile strength at elevated temperatures. The objective is to develop an effective model and establish fire performance criteria for concrete structures in fire scenarios. Multilayer networks that employ reactive error distribution approaches can determine the residual tensile strength of GFRP using six input parameters, in contrast to previous mathematical models that utilized one or two inputs while disregarding the others. Multilayered networks employing reactive error distribution technology assign weights to each variable influencing the residual tensile strength of GFRP. Temperatur
... Show MoreAntibacterial substances belong to a group of compounds that attack dangerous microorganisms. Therefore, killing bacteria or reducing their metabolic activity will lessen their adverse effects on a biological system. They originated from either synthetic materials, microbes, or mold. Many of these medications treat the gram-negative bacteria from the critical precedence group, such as pseudomonas, carbapenem-resistant acinetobacter, and enterobacterales. This study aims to investigate the simultaneous analysis of specific antibacterial spectrophotometrically. The WHO maintains this list of priority infections with antibiotic resistance. Drug combinations in single dosage forms are becoming increasingly popular in the pharmaceutical industry
... Show MoreNovel artificial neural network (ANN) model was constructed for calibration of a multivariate model for simultaneously quantitative analysis of the quaternary mixture composed of carbamazepine, carvedilol, diazepam, and furosemide. An eighty-four mixing formula where prepared and analyzed spectrophotometrically. Each analyte was formulated in six samples at different concentrations thus twentyfour samples for the four analytes were tested. A neural network of 10 hidden neurons was capable to fit data 100%. The suggested model can be applied for the quantitative chemical analysis for the proposed quaternary mixture.