Background: With the increasing demands for adult orthodontics, a growing need arises to bond attachments to porcelain surfaces. Optimal adhesion to porcelain surface should allow orthodontic treatment without bond failure but not jeopardize porcelain integrity after debonding.The present study was carried out to compare the shear bond strength of metal bracket bonded to porcelain surface prepared by two mechanical treatments and by using different etching systems (Hydrofluoric acid 9% and acidulated phosphate fluoride 1.23%). Materials and Methods: The samples were comprised of 60 models (28mm *15mm*28mm) of metal fused to porcelain (feldspathic porcelain). They were divided as the following: group I (control): the porcelain surface left untreated and glazed, group II (Diamond bur group): the porcelain surface was treated with fine diamond bur at speed of 350000 rpm for 20 seconds, group III (Red stone bur): the porcelain surface was treated with coarse red stone bur at speed of 8500 rpm for 20 seconds. Each group consists of 20 samples, then each group subdivided into two subgroups; one treated with acidulated phosphate fluoride 1.23% and the other subgroup treated with Hydrofluoric acid 9 % with silane coupling agent. Results: The result of this study revealed that there was very high significant difference among all tested groups and the highest shear bond strength was for diamond bur group with HFA and Silane (8.67 MPa), the 2nd highest strength was for control group with HFA and Silane (7.52 MPa), the 3rd was (7.38 MPa) in red stone bur with HFA and Silane, the least shear bond strength values were obtained for subgroups treated with acidulated phosphate fluoride gel 1.23%. Conclusions: The most reliable procedure for bonding orthodontic brackets to the porcelain surfaces is through the surface treatment combinations of mechanical roughening by using diamond bur, 9% Hydrofluoric acid and Silane coupling agent application.
The research deals with an evolutionary-based mutation with functional annotation to identify protein complexes within PPI networks. An important field of research in computational biology is the difficult and fundamental challenge of revealing complexes in protein interaction networks. The complex detection models that have been developed to tackle challenges are mostly dependent on topological properties and rarely use the biological properties of PPI networks. This research aims to push the evolutionary algorithm to its maximum by employing gene ontology (GO) to communicate across proteins based on biological information similarity for direct genes. The outcomes show that the suggested method can be utilized to improve the
... Show MoreDeveloped and underdevelopment countries, on equal terms, face the problem of budget deficiency. Budget deficiency means that the public expenditure surpasses the public revenues. This, on the international level, is one of the most serious economic problems with many direct effects on the national economy, and depends, basically, on its finance chosen method. Looking for a solution to this problem, for this reason and many other ones, has been highlighted in spite of the many attempts to reduce the role of the governmental expenditure. Budget deficiency can not be attributed to a single unique cause since it is complex phenomenons the causes of which are related to many factors contribute to its occurrence, some of which refer t
... Show MoreIn this paper, the satellite in low Earth orbit (LEO) with atmospheric drag perturbation have been studied, where Newton Raphson method to solve Kepler equation for elliptical orbit (i=63 , e = 0.1and 0.5, Ω =30 , ω =100 ) using a new modified model. Equation of motion solved using 4th order Rang Kutta method to determine the position and velocity component which were used to calculate new orbital elements after time step ) for heights (100, 200, 500 km) with (A/m) =0.00566 m2/kg. The results showed that all orbital elements are varies with time, where (a, e, ω, Ω) are increased while (i and M) are decreased its values during 100 rotations.The satellite will fall to earth faster at the lower height and width using big values for ecce
... Show MoreFatigue failure is almost considered as the predominant problem affecting automotive parts under dynamic loading condition. Thus, more understanding of crack behavior during fatigue can strongly help in finding the proper mechanism to avoid the final fracture and extent the service life of components. The main goal of this paper is to study the fracture behavior of low carbon steel which is used mostly in automotive industry. For this purpose, the fractography of samples subjected to high and low stress levels in fatigue test then was evaluated and analyzed. Hardness and tensile tests were carried out to determine the properties of used steel. Also, the samples were characterized by microstructure test and XRD analysis to examine the con
... Show MoreTwo experiments were carried out, the first at the College of Agriculture - University of Baghdad during spring season 2017 Everest cv. class (Elite) was used to study the effect of foliar application of calcium and magnesium and addition of humic acid to the soil on potato growth and yield, The layout of the experiment was factorial within RCBD design using three replicates. Calcium and Magnesium sprayed with concentrations (0, 500, 1000 mg.L-1), while the humic acid was added to the soil with (0, 0.75 gm.m2), The second experiment included storage of tubers produced from the spring season, with to study the effect of field treatments on improving the storability of the tubers. The results showed that the treatment of calci
... Show More