Background: The styloid process is a cylindrical bone (protrusion). It situated above the common carotid artery between the external and internal branches immediately proximal to the internal jugular vein and facial nerves. The styloid process varies in length also it may be absent as well as elongated. Classically, an elongated styloid process and calcified of stylohyoid ligament causes Eagle’s syndrome. The aim of this study was to examine the styloid process using 3 dimensional multi-detector computed tomography (3D-MDCT) to detect the presence of Eagle’s syndrome that causes severe headache and migraine. Materials and methods: One hundred patients with severe headache and migraine were exposed to 3D- multi-detector CT with special brain CT in Al-Karkh general hospital to examine the styloid process. By elongated the field of the brain CT multi-detector downward and using facial volume, the morphological alterations of styloid process and stylohyoid ligament can be discovered. Results: Thirty four patients (25 females and 9 males) had a problem in the styloid process. Seven of them were suffered from elongation of styloid process while 27 patients had fractured styloid process unilaterally or bilaterally Conclusion: Eagle’s syndrome is one of the important causes of severe headache and craniofacial pain which is detected by special field of brain 3D CT - multi-detector.
Activated carbon derived from Ficus Binjamina agro-waste synthesized by pyro carbonic acid microwave method and treated with silicon oxide (SiO2) was used to enhance the adsorption capability of the malachite green (MG) dye. Three factors of concentration of dye, time of mixing, and the amount of activated carbon with four levels were used to investigate their effect on the MG removal efficiency. The results show that 0.4 g/L dosage, 80 mg/L dye concentration, and 40 min adsorption duration were found as an optimum conditions for 99.13% removal efficiency. The results also reveal that Freundlich isotherm and the pseudo-second-order kinetic models were the best models to describe the equilibrium adsorption data.
This work investigates the impacts of eccentric-inclined load on ring footing performance resting on treated and untreated weak sandy soil, and due to the reduction in the footing carrying capacity due to the combinations of eccentrically-inclined load, the geogrid was used as reinforcement material. Ring radius ratio and reinforcement depth ratio parameters were investigated. Test outcomes showed that the carrying capacity of the footing decreases with the increment in the eccentric-inclined load and footing radius ratio. Furthermore, footing tilt and horizontal displacement increase with increasing the eccentricity and inclination angle, respectively. At the same time, the increment in the horizontal displacement due t
... Show MoreThe δ-mixing of γ-transitions in 70As populated in the 32 70 70 33 Ge p n As (, ) γ reaction is calculated in the present work by using the a2-ratio methods. In one work we applied this method for two cases, the first one is for pure transition and the sacend one is for non pure transition, We take into account the experimental a2-coefficient for previous works and δ -values for one transition only.The results obtained are, in general, in a good agreement within associated errors, with those reported previously , the discrepancies that occur are due to inaccuracies existing in the experimental data of the previous works.
A new compound 2-(4-methoxyphcnyl)-5-(4-aminophenyl)-1,3,4-
oxadiazole (VI) was prepared by intramol ecular condensation reaction followed by elimination of some simple moieties such as IhO and HCI by using POCI3 with acid hydrazide. A series of new ShiffsÂ
bases 2-(4-methoxyphenyl)-5-[4(4:alkoxybenzoyloxy) benzylidene amino phenyl] I,3,4-oxadia:t.ole (VII].was synthesized from treatment
of oxadiazole derivative [VI] with an appropriate aromatic aldehyde
(IU). Struct\lfe of the resulting products have been ascertaim:d by their melting pointS, elemental analysis ( some of them) and spectral data.
This study shows that it is possible to fabricate and characterize green bimetallic nanoparticles using eco-friendly reduction and a capping agent, which is then used for removing the orange G dye (OG) from an aqueous solution. Characterization techniques such as scanning electron microscopy (SEM), Energy Dispersive Spectroscopy (EDAX), X-Ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) were applied on the resultant bimetallic nanoparticles to ensure the size, and surface area of particles nanoparticles. The results found that the removal efficiency of OG depends on the G‑Fe/Cu‑NPs concentration (0.5-2.0 g.L-1), initial pH (2‑9), OG concentration (10-50 mg.L-1), and temperature (30-50 °C). The batch experiments showed
... Show MorePromoting the production of industrially important aromatic chloroamines over transition-metal nitrides catalysts has emerged as a prominent theme in catalysis. This contribution provides an insight into the reduction mechanism of p-chloronitrobenzene (p-CNB) to p-chloroaniline (p-CAN) over the γ-Mo2N(111) surface by means of density functional theory calculations. The adsorption energies of various molecularly adsorbed modes of p-CNB were computed. Our findings display that, p-CNB prefers to be adsorbed over two distinct adsorption sites, namely, Mo-hollow face-centered cubic (fcc) and N-hollow hexagonal close-packed (hcp) sites with adsorption energies of −32.1 and −38.5 kcal/mol, respectively. We establish that the activation of nit
... Show MoreNovel derivatives of 1-(´1, ´3, ´4, ´6-tetra benzoyl-β-D-fructofuranosyl)-1H- benzotriazole and 1-(´1, ´3, ´4, ´6-tetra benzoyl-β-D-fructofuranosyl)-1H- benzotriazole carrying Schiff bases moiety were synthesised and fully characterised. The protection of D- fructose using benzoyl chloride was synthesized, followed by nucleophilic addition/elimination between benzotria- zole and chloroacetyl chloride to give 1-(1- chloroacetyl)- 1H-benzotriazole. The next step was condensation reaction of protected fructose and 1-(1-chloroacetyl)-1H- benzotriazole producing a new nucleoside analogue. The novel nucleoside analogues underwent a second conden- sation reaction with different aromatic and aliphatic amines to provide new Schiff b
... Show MoreAssessing water quality provides a scientific foundation for the development and management of water resources. The objective of the research is to evaluate the impact treated effluent from North Rustumiyia wastewater treatment plant (WWTP) on the quality of Diyala river. The model of the artificial neural network (ANN) and factor analysis (FA) based on Nemerow pollution index (NPI). To define important water quality parameters for North Al-Rustumiyia for the line(F2), the Nemerow Pollution Index was introduced. The most important parameters of assessment of water variation quality of wastewater were the parameter used in the model: biochemical oxygen demand (BOD), chemical oxygen dem
Abstract: Background: Staphylococcus aureus is Gram-positive bacteria that lives as a normal flora in living organisms but can be pathogenic to humans. Although a relatively unspectacular, nonmotile coccoid bacterium, S. aureus is a dangerous human pathogen in both community-acquired and nosocomial infections. Due to the increasing emergence of new strains of this antibiotic-resistant bacteria, it has become essential to approach different methods to control this pathogen. One of these methods is the antimicrobial photodynamic inactivation process using a low-level laser, in this paper, the Photodynamic effects of Rose Bengal and LLLL on the virulence factors of S.aureus were evaluated.