Background: This study aimed to evaluate the effect addition of polyester fibers on the some mechanical properties of heat cured acrylic resin (implant strength, flexural strength and hardness) Materials and methods: Ninety specimens were used in the study. Thirty specimens were used for impact strength measurements (80mm X 10mm X 4mm) length, width and thickness respectively. The specimens divided into three test groups (n=10), first group formed from heat cure acrylic resin without fiber reinforcement. Second group was formed from heat cure acrylic resin was reinforced with 2 mm length polyester fiber and third group was formed from heat cure acrylic resin reinforced with 4mm length polyester fiber, impact strength measured by impact testing device. 30 specimens with (65 mm X 10mm 2.5mm) length, width and thickness respectively were used in 3 groups (n=10) flexural strength test. The flexural strength was measured by using flexural testing device. 30 specimens with (65mm X 10m X 2.5mm) length width and thickness respectively were used for hardness test. The specimens were divided into 3 group (n=10) as in impact strength and flexural strength. Hardness measured by using (shore D hardness tester TH210). Results: revealed statistically significant increase on impact strength especially on 4mm length when compared to control group. Significant decreases in flexural strength of PMMP. When compared to control group with 4mm length fiber reinforcement. Non significant decrease when compared control group with 2mm length fiber reinforced PMMA. Significant decrease in hardness of PMMA resin after reinforcement with 2mm, 4mm lengths polyester fibers. Conclusions: Strengthening with the polyester fiber decreased the flexural strength and hardness of the resin, but increased impact strength. Thus when high impact acrylic resins are needed, fiber reinforced resins may be the material of choice.
This paper displays the effect of uncoated and coated chopped carbon fibers with alumina Al2O3 or Tri calcium phosphate (TCP) on the impact strength of acrylic poly methyl methacrylate (PMMA) denture base resin. To improve bonding between carbon fibers and coating materials powders, the surface of carbon fibers has been treated with Para amino benzoic acid (C9H10N2O3) and poly vinyl alcohol (PVA) was also used. The morphology of the coating layers has been examined by field emission scanning electron microscope (FE-SEM). From the results, PMMA reinforced with uncoated chopped carbon fiber has high impact strength value but still have bad aesthetic. Samples prepared b
... Show MoreResin-modified glass ionomer cement tends to shrink due to polymerization of the resin component. Additionally, they are more prone to syneresis and imbibition during the setting process. This
Objective: To evaluate the psychological work environment's effect on the workers’ productivity in Baghdad
City industries at Al-Rusafa and Al-Karkh Sectors.
Methodology: A descriptive evaluation design is employed throughout the present study from May 25th 2012
through January 7
th
, 2014. A purposive (non probability) sample is selected for the study which includes (500)
workers from industries at AL-Russafa and AL-Kerch sectors in Baghdad City. A questionnaire is constructed to
gather data which may assist to achieve the objective of the study. Content validity of the instrument is
determined through eliciting the opinions of a panel of (10) experts and the reliability through a pilot study by
using intern
Photonic Crystal Fiber Interferometers (PCFIs) are greatly used
for sensing applications. This work presents the fabrication and
characterization of a relative humidity sensor based on Mach-
Zehnder Interferometer (MZI), which operates in reflection mode.
The humidity sensor operation based on the adsorption and
desorption of water vapour at the silica-air interface within the PCF.
The fabrication of this sensor is simple, it only includes splicing and
cleaving the PCF with SMF.PCF (LMA-10) with a certain length
spliced to SMF (Corning-28).
The spectrum of PCFI exhibits good sensitivity to humidity
variations. The PCFI response is observed for a range of humidity
values from (27% RH to 85% RH), the positi
The physical, mechanical, electrical and thermal properties containing (Viscosity, curing, adhesion force, Tensile strength, Lap shear strength, Resistively, Electrical conductivity and flammability) of adhesive material that prepared from Nitrocellulose reinforced with graphite particles and aluminum streat. A comparison is made between the properties of adhesive material with varying percentage of graphite powder (0%, 25%, 30%, 35%, 40%) to find out the effect of reinforcement on the adhesive material. The ability of property an electrical was studied through the measurement of conductivity a function of temperature varying. The results of comparison have clearly shown that the increasing of conten
... Show MoreThe aim of present work is to improve mechanical and fatigue properties for Aluminum alloy7049 by using Nano composites technique. The ZrO2 with an average grain diameter of 30-40 nm, was selected as Nano particles, to reinforce Aluminum alloy7049 with different percentage as, 2, 4, 6 and 7 %. The Stir casting method was used to fabricate the Nano composites materials due to economical route for improvement and processing of metal matrix composites. The experimental results were shown that the adding of zirconium oxide (ZrO2) as reinforced material leads to improve mechanical properties. The best percentage of improvement of mechanical properties of 7049 AA was with 4% wt. of ZrO2 about (7.76% ) for ultim
... Show MoreThe aim of this work is to enhance the mechanical properties of the glass ionomer cement GIC (dental materials) by adding Zirconium Oxide ZrO2 in both micro and nano particles. GIC were mixed with (3, 5 and 7) wt% of both ZrO2 micro and nanoparticles separately. Compressive strength (CS), biaxial flexural strength (BFS), Vickers Microhardness (VH) and wear rate losses (WR) were investigated. The maximum compression strength was 122.31 MPa with 5 wt. % ZrO2 micro particle, while 3wt% nanoparticles give highest Microhardness and biaxial flexural strength of 88.8 VHN and 35.79 MPa respectively. The minimum wear rate losses were 3.776µg/m with 7 wt. % ZrO2 nanoparticle. GIC-contai
... Show MoreThe aim of this research is analysis the effect of the changes in (GDA, g, inflation) at average and standard economic curriculum in composition of the models, depending on SPSS program in analysis, and according to available date from central bank of Iraq and during the period from 2003 to 2018 and by using OLS and estimate of the equation and the results showed a statistical significance relation in incorporeal level 5% and the R2 value equal to 92.1 refer to the changes in independent variables explain 92% of changes of unemployment and the independent variables effect are very limit depend on estimated parameters in the model and respectively (0.986,0.229,-0.060), the research recommended necessity to active the inve
... Show MoreThe electronic properties (such as energy gap HOMO levels. LUMO levels, density of state and density of bonds in addition to spectroscopic properties like IR spectra, Raman spectra, force constant and reduced masses as a function of frequency) of coronene C24 and reduced graphene oxide C24OX , where x=1-5, were studied.. The methodology employed was Density Functional Theory (DFT) with Hybrid function B3LYP and 6-311G** basis sets. The energy gap was calculated for C24 to be 3.5 eV and for C24Ox was from 0.89 to 1.6862 eV for x=1-5 ,respectively. These energy gaps values are comparable to the measured gap of Graphene (1-2.2 eV). The spectroscopic properties were compared with experimental measurements, specificall
... Show More