Background: The aim of this study was to measure the radiopacity (RO) of modified microhybrid composite resins by adding 2 types of nanofillers (Zinc Oxide and Calcium Carbonate) in two concentrations 3% and 5% and comparing them to unmodified microhybrid composite resins and to nanofilled composite resin. Materials and Methods: Two types of composite resin were used (Microhybrid composite MH Quadrent anterior shine and Nanofilled composite resin Filtek Z350 XT), for each tested group five disk-shaped specimens (1-mm-thick and 15 mm diameter) were fabricated. The material samples were radiographed together with the aluminum step wedge. The density of the specimens was determined with a transmission densitometer and was expressed in term of equivalent thickness of aluminum. Data analyzed by one-way ANOVA. Results: The radiopacity (RO) values of the tested group ranged between (0.9293- 2.6242 Eq. Al thickness) and there were significant differences among them. Nanofilled composite resin Filtek Z350 XT showed the highest value of RO while unmodified Microhybrid composite MH Quadrent anterior shine showed the lowest value of RO. Conclusion: The addition of 3% of both the ZnO and CaCO3 nanofillers fillers to microhybrid composite significantly increased the RO, while the addition of 5% of CaCO3 and ZnO nanofillers to microhybrid composite showed non-significant increase in the RO of the composite.
Objectives: This study aimed to evaluate and compare the effect of plasma treatment versus conventional treatment on the micro shear bond strength (μSBS), surface roughness, and wettability of three different CAD/CAM materials. Materials and methods: Sixty cylindrical specimens (5 mm diameter ×3 mm height) were prepared from three different CAD/CAM materials: Group A: Zirconia, Group B: Lithium disilicate, and Group C: Resin nano-ceramic. Each group was subdivided into two subgroups according to surface treatment used: Subgroup I: Conventional treatment, zirconia was sandblasted with Al2O3, while lithium disilicate and resin nano-ceramic were etched with hydrofluoric acid. Subgroup II: Plasma treatment, the surface of each material was tr
... Show MoreThis study is attempt to improve thermal isolation through measuring thermal conductivity composite of on polyester resin with fillers of (TiO2, ZnO, Acrylonitril, wood flour Coconut (Wf). The grain size of the fillers is 200 µm. The number of samples is (16) in addition to the virgin sample; these samples are prepared by cast molding method for polyester with filler volume fractions (5%, 10%, 15% and 20%). Shore hardness tests were used to measure the hardness and Lee disk method for thermal conductivity. The experimental results showed that the (20% ZnO) sample has the maximum value of thermal conductivity where (20% w.f) has minimum thermal conductivity .on the other hand (15% ZnO) sample give the maximum value of hardness where (20% w
... Show MoreBackground: Maxillary first premolar with wide MOD cavity more susceptible to fracture. The aim of this study was to assess the influence of cavity design for cusp coverage on the fracture resistance of weakened maxillary first premolar restored with CAD/CAM hybrid ceramic versus nanohybide composite. Materials and Methods: Fifty six intact maxillary first premolars of approximately comparable sizes were divided into seven groups eight for each: Group A: Intact teeth (control group); Group B: teeth prepared for MOD inlay; Group C: teeth prepared for MOD onlay covering the lingual cusp; Group D: teeth prepared for MOD covering buccal and lingual cusps ,the previous three groups indirectly restored with nanohybrid composite (3M ESPE Z 250 X
... Show MoreBackground: This study was conducted to assess the effect of sonic activation and bulk placement of resin composite in comparison to horizontal incremental placement on the fracture resistance of weakened premolar teeth. Materials and method: Sixty sound human single-rooted maxillary premolars extracted for orthodontic purposes were used in this study. Teeth were divided into six groups of ten teeth each: Group 1 (sound unprepared teeth as a control group), Group 2 (teeth prepared with MOD cavity and left unrestored), Group 3 (restored with SonicFill™ composite), Group 4 (restored with Quixfil™ composite), Group 5 (restored with Tertic EvoCeram® Bulk Fill composite) and Group 6 (restored with Universal Tetric EvoCeram® co
... Show MoreOne of the most popular causes for implant infection is dental plaque bacteria. Previous studies have shown the bactericidal effect of CO2 laser irradiation on bacteria associated with soft tissue surrounding the implant materials. No published studies have examined the effect of irradiation by CO2 laser on Streptococcus oralis and Staphylococcus aureus.The aim of this study was to evaluate the bactericidal effect of CO2 laser on bacteria that are causing dental implant infections. This study was carried out on two isolates of bacterial species out of 25 samples, isolated from patients having soft tissue infections around the dental implant. These two pure isolates including Streptococcus oralis and Staphylococcus aureus were identified
... Show MoreEfficacy of Several Forms of Storage Medium on Avulsed Teeth's Enamel Surface Roughness (An in Vitro Study), Rawaa Sadiq Obeid1*, Muna Saleem Khalaf2
Background: Successful root canal therapy depends on thorough chemo mechanical debridement of pulpal tissue, dentin debris and infective microorganisms. Objective: This study aimed to investigate the antibacterial effect of silver nanoparticles, sodium hypochlorite and chlorhexidine in reducing the bacterial infection of the root canals. Materials and Methods: The root canals of 55 single-rooted teeth were cleaned, shaped, and sterilized. All the teeth samples were inoculated with Enterococcus faecalis and incubated at 37°C for 2 weeks. Then, the teeth were divided into four groups. Group I (n=15): 100 ppm silver nanoparticles, Group II (n=15): 2.5 sodium hypochlorite, Group III (n=15): 2% chlorhexidine, IV (n=10): Normal saline as a contr
... Show More