Background: Acrylic resin polymer s used in prosthodontic treatment as a denture base material for several decades. Separation and debonding of artificial teeth from denture bases present a laboratory and clinical problem affect patient and dentist. The aim of this study is to evaluate the effect of oxygen plasma and argon plasma treatment of acrylic teeth and thermocycling on bonding strength to hot cured acrylic resin denture base material. Materials and Methods: Sixty denture teeth (right maxillary central incisor) are selected. The denture teeth are waxed onto the beveled surface of rectangular wax block according to Japanese standard for artificial teeth. The control group consisted of 20 denture teeth specimen without any treatment. The oxygen plasma group consisted of 20 denture teeth specimen treated with oxygen plasma for two minutes exposure time at plasma apparatus. The argon plasma group consisted of 20 denture teeth treated with argon plasma for two minuets exposure time. All the specimens are undergone flasking and wax elimination procedure in the conventional way. All specimens stored in distilled water for 7 days at 37°C, then half of the specimens of all groups undergoes thermocycling between 5°C -55°C in 60 seconds cycles for three days and tested for shear bond strength using universal testing machine the data was collected and analyzed statistically using analysis of variance and independent sample t-test. Results: The plasma treated groups showed the higher mean force required to fracture the acrylic teeth from their heat cured acrylic resin denture bases, as compared to control group, and the oxygen plasma treatment group showed higher shear bond value than the argon plasma treatment. The thermocycling had a deleterious effect on bonding strength for control group while the plasma treated group showed an increase in bond strength following thermocycling. Conclusion: Plasma treatment method was an effective approach for increasing the shear bond strength as a result of surface oxidation and chemical etching effect of oxygen plasma and micromechanical interlocking effect of argon plasma.
The ability of different alumina-grafted particles was examined for adsorption of phenol and p-chlorophenol under different conditions (i.e. concentrations and temperatures). Dispersion stability of alumina in liquid medium (water) was studied using settling under gravity technique. The result shows the settling initial rate of the alumina-grafted acrylic acid particles was faster than initial rate of settling when alumina-graft acrylic acid monomer adsorbed phenol and p-chlorophenol and vice versa to the alumina-graft poly(acrylic acid) polymer.
Thermodynamic parameters values (DG, DS, DH) were calculated for adsorption processes of phenol and p-chlorophenol adsorbed onto different surfaces. The
... Show MoreBackground: The mechanical and physical properties of Polymethyl methacrylate (PMMA) don’tfulfill the entire ideal requirements of denture base materials. The purpose of this study was to produce new modified polymer nanocomposite (PMMA /ZrO2-TiO2) andassess itsimpact strength, transverse strength and thermal conductivity in comparison to the conventionalheat polymerized acrylic resin. Materials and Methods: Both ZrO2 and TiO2nano fillers were silanized with TMSPM (trimethoxysilyl propyl methacrylate) silane coupling agent before beingdispersed by ultrasonication with the methylmethacrylate (monomer) and mixed with the polymer by means of 2% by weight in (1:1) ratio, 60 specimens were constructed by conventional water bath processing
... Show More
Objective: the aim of this study is to invest age and determine the effect of using (2) packing
technique (conventional and new tension technique) on hardness of (2) types of heat cure acrylic
resin which are (Ivoclar and Qual dental type).
Methodology : this study was intended the using of two types of heat cure acrylic (IVoclar and
Qual dental type) which are used in construction of complete denture which packed in two different
packing technique (conventional and new tension technique) and accomplished by using a total of
(40) specimens in diameter of ( 2mm thickness, 2 cm length and 1 cm width) . This specimens were
sectioned and subdivide into (4) group each (10) specimens for one group , then signed as (A, Al B
Background: The displacement of artificial teeth during complete denture construction presents major processing errors in the occlusal vertical dimension which were verified at the previous trial denture stage. The aim of this study was to assess the effect of delay in processing after final flask closure and tension application on the vertical acrylic and porcelain teeth displacement of complete dentures constructed from heat cured acrylic and the results were compared with the conventional processing method. Materials and methods: forty samples of identical maxillary complete dentures were constructed from heat polymerized acrylic resin. These samples were subdivided into the following experimental subgroups in which each subgroup contai
... Show MoreLow conversion copolymerization of acrylamide AM (monomer-1) have been conducted with acrylic acid AA in dry benzene at 70°C , using Benzoyl peroxide BPO as initiator . The copolymer composition has been determined by elemental analysis. The monomer reactivity ratios have been calculated by the Kelen-Tudos and Finman-Ross graphical procedures. The derived reactivity ratios (r1, r2) are: (0.620, 0.996) for (AM / AA) systems , and found that the reactivity of the monomer AA is more than the monomer AM in the copolymerization of (AA/AM) system. The reactivity ratios values were used for microstructures calculation.
Background: The mechanical properties of 3D-printed denture base resins are crucial factors for determining the quality and performance of dentures inside a patient’s mouth. Tensile strength and diametral compressive strength are two properties that could play significant roles in assessing the suitability of a material. Although they measure different aspects of material behavior, a conceptual link exists between them in terms of overall material strength and resilience. Aim: This study aims to investigate the correlation between tensile strength and diametral compressive strength after incorporating 2% ZrO2 nanoparticles (NPs) by weight into 3D-printed denture base resin. Methods: A total of 40 specimens (20 dumbbell-shaped and
... Show MoreDenture bases are fabricated routinely using Poly(methyl methacrylate) (PMMA) acrylic resin. Yet, it is commonly known for its major drawbacks such as insufficient strength and ductility. The purpose of this study was to improve the performance of PMMA acrylic resin as a denture base material by reinforcement with surface treated lithium disilicate glass ceramic powder. The ceramic powder was prepared by grinding and sieving IPS e.max CAD MT blocks. Then, the powder was surface treated with an organosilane coupling agent (TMSPM) and added to PMMA in amount of 1%, 3%, 5% and 7% by weight. Characterizations of the powder was done by particle size analysis, XRD and FTIR. Transverse strength, Impact strength, Shore D hardness and surface roughn
... Show More