Background: Acrylic resin polymer s used in prosthodontic treatment as a denture base material for several decades. Separation and debonding of artificial teeth from denture bases present a laboratory and clinical problem affect patient and dentist. The aim of this study is to evaluate the effect of oxygen plasma and argon plasma treatment of acrylic teeth and thermocycling on bonding strength to hot cured acrylic resin denture base material. Materials and Methods: Sixty denture teeth (right maxillary central incisor) are selected. The denture teeth are waxed onto the beveled surface of rectangular wax block according to Japanese standard for artificial teeth. The control group consisted of 20 denture teeth specimen without any treatment. The oxygen plasma group consisted of 20 denture teeth specimen treated with oxygen plasma for two minutes exposure time at plasma apparatus. The argon plasma group consisted of 20 denture teeth treated with argon plasma for two minuets exposure time. All the specimens are undergone flasking and wax elimination procedure in the conventional way. All specimens stored in distilled water for 7 days at 37°C, then half of the specimens of all groups undergoes thermocycling between 5°C -55°C in 60 seconds cycles for three days and tested for shear bond strength using universal testing machine the data was collected and analyzed statistically using analysis of variance and independent sample t-test. Results: The plasma treated groups showed the higher mean force required to fracture the acrylic teeth from their heat cured acrylic resin denture bases, as compared to control group, and the oxygen plasma treatment group showed higher shear bond value than the argon plasma treatment. The thermocycling had a deleterious effect on bonding strength for control group while the plasma treated group showed an increase in bond strength following thermocycling. Conclusion: Plasma treatment method was an effective approach for increasing the shear bond strength as a result of surface oxidation and chemical etching effect of oxygen plasma and micromechanical interlocking effect of argon plasma.
The interests toward developing accurate automatic face emotion recognition methodologies are growing vastly, and it is still one of an ever growing research field in the region of computer vision, artificial intelligent and automation. However, there is a challenge to build an automated system which equals human ability to recognize facial emotion because of the lack of an effective facial feature descriptor and the difficulty of choosing proper classification method. In this paper, a geometric based feature vector has been proposed. For the classification purpose, three different types of classification methods are tested: statistical, artificial neural network (NN) and Support Vector Machine (SVM). A modified K-Means clustering algorithm
... Show MoreThis research aims to analyze the impact of effective manufacturing strategy on total productive maintenance. Effective manufacturing focuses on improving product quality, increasing productivity, and reducing costs, while total productive maintenance focuses on maintaining machines and equipment in good operational condition and high efficiency. The research seeks to understand how to achieve integration between these two dimensions to achieve excellent performance in manufacturing operations. The study was conducted using the General Company for Battery Manufacturing as a research community, with a sample size of 60 individuals. The research found significant results, including the fact that using an effective manufacturing strategy leads
... Show MoreLactobacillus Plantarum and Lactobacillus rhamnosus GG were encapsulated using 3% of alginate via extrusion technique. And the probiotics capsules produced were further coated used 1% chitosan to increase the survival of probiotics, and evaluation of The heat resistance of the slow pasteurization and fast pasteurization for Lb,pla and Lb.GG for control and bacteria coated one layer and bacteria coated two layer at 63°C/ 30 minutes and 72°C/ 15 seconds. The results indicate that the Probiotic coated two layer are more resistant to pasteurization temperatures at 63°C/ 30 minutes and 72°C/ 15 seconds than the Probiotic coated one layer. While the results of the control follow a significant reduction for viability of cell toward pasteuri
... Show MoreBackground: Human semen contains high concentrations of fructose, zinc (Zn) and copper (Cu) in bound and ionic forms for Zn and Cu. The presence of abnormal levels of fructose and those trace elements may affect spermatogenesis with regard to production, maturation, motility and fertilizing capacity of the spermatozoa.Objective: To evaluate the levels of fructose, Zn and Cu in seminal plasma in different groups of male infertility and to correlate their concentrations with various sperm parameters.Methods: The concentrations of fructose, Zn and Cu were measured in 114 semen samples from normozoospermic, oligozoospermic, astheno-zoospermic, and azoospermic men using the electrothermal-atomic absorption spectrometry for Zn and Cu determinatio
... Show MoreFilms of CdSe have been prepared by evaporation technique with thickness 1µm. Doping with Cu was achieved using annealing under argon atmosphere . The Structure properties of these films are investigated by X-ray diffraction analysis. The effect of Cu doping on the orientation , relative intensity, grain size and the lattice constant has been studied. The pure CdSe films have been found consist of amorphous structure with very small peak at (002) plane. The films were polycrystalline for doped CdSe with (1&2wt%) Cu contents and with lattice constant (a=3.741,c=7.096)A°, and it has better crystallinty as the Cu contents increased to (3&5wt%) Cu. The reflections from [(002), (102). (110), (112), and (201)]planes are more prominen
... Show Moren-Hexane conversion enhancement was studied by adding TCE (Trichloro-ethylene) on feed stream using 0.3%Pt/HY zeolite catalyst. All experiments were achieved at atmospheric pressure and on a continuous laboratory unit with a fixed bed reactor at a temperature range 240-270◦C, LHSV 1-3h-1, H2/nC6 mole ratio 1-4.
By adding 435 ppm of TCE, 49.5 mole% conversion was achieved at LHSV 1h-1, temperature of 270ºC and H2/nC6 mole ratio of 4, while the conversion was 18.3 mol% on the same catalyst without adding TCE at the same conditions. The activation energy decreased from 98.18 for pure Pt/HY zeolite to 82.83 kJ/mole by adding TCE. Beside enhancement the activity, selectivity and product distribution enhanced by providing DMB (Dimethyl b