Background: White-spot lesion is one of the problems associated with the fixed orthodontic treatment. The aims of this in-vitro study were to investigate enamel damage depth on adhesive removal when the adhesive were surrounded by sound, demineralized or demineralized enamel that had been re-mineralized prior to adhesive removal using 10% Nano-Hydroxy apatite and to determine the effect of three different adhesive removal techniques. Materials and methods: Composite resin adhesive (3M Unitek) was bonded to 60 human upper premolars teeth which were randomly divided in to three groups each containing ten sound teeth and ten teeth with demineralized and re-mineralized lesions adjacent to the adhesive. A window of 2 mm was prepared on the buccal surface of the tooth and painted with an acid resistant nail varnish except for the window.The demineralized enamel produced by immersion of teeth in demineralization buffer for 12 days.half of the demineralized window, was covered with acid –resistant red nail varnish, and the samples were then subjected to re-mineralization with 10% of nano hydroxyapatite. The adhesive was removed with either :(1) fiber reinforced composite bur in slow speed handpiece (SS); (2)12 fluted long flame carbide bur in high speed handpiece (HS); (3) ultrasonic scaler (US).damage to the enamel was assessed using stereomicroscope with grid eye piece. Results: the greatest to least mean depth of damage with three different adhesive removal techniques to sound enamel was HS˃ US ˃SS and to demineralized and re-mineralized enamel were SS ˃US˃ HS. Sound enamel had the least amount of damage. Re mineralization before the adhesive removal highly significant reduced the amount of damage produced by all techniques compared with demineralized enamel. Conclusions: When the demineralized enamel was present 12 fluted long flame carbide bur were found to be the least damage in adhesive removal technique and re-mineralization further reduced the amount of enamel damage
In this research, we studied the effect of concentration carriers on the efficiency of the N749-TiO2 heterogeneous solar cell based on quantum electron transfer theory using a donor-acceptor scenario. The photoelectric properties of the N749-TiO2 interfaces in dye sensitized solar cells DSSCs are calculated using the J-V curves. For the 〖(CH_3)〗_3 COH solvent, the N749-TiO2 heterogeneous solar cell shows that the concentration carrier together with the strength coupling are the main factors affecting the current density, fill factor and efficiency. The current density and current increase as the concentration increases and the strength coupling increases as the N749-TiO2 heterogeneous in solar cell. However, the efficiency is more sens
... Show MoreAb – initio density function theory (DFT) calculations coupled with Large Unit Cell (LUC) method were carried out to evaluate the electronic structure properties of III-V zinc blend (GaAs). The nano – scale that have dimension (1.56-2.04)nm. The Gaussian 03 computational packages has been employed through out this study to compute the electronic properties include lattice constant, energy gap, valence and conduction band width, total energy, cohesive energy and density of state etc. Results show that the total energy and energy gap are decreasing with increase the size of nano crystal . Results revealed that electronic properties converge to some limit as the size of LUC increase .
The study was carried out by reinforcing the resin matrix material
which was (Epoxy- Ep828) by useing Kevlar fibers and glass fibers type (E-gl ass) both or them in the form of woven roving and poly propylene tlbcrs in the form chopped strand mats. wi th (30%) volume fraction. Some mechan i cal properties of the were prepared composite specimens U ltraviolet radiation were stuied after being subjected to different weathering conditi ons i ncluded. Compression and hardness testing were carried out using Briel! method so as to compare between composite behavior i n the environments previously mentioned .
<
... Show MoreThe Electro-Fenton oxidation process is one of the essential advanced electrochemical oxidation processes used to treat Phenol and its derivatives in wastewater. The Electro-Fenton oxidation process was carried out at an ambient temperature at different current density (2, 4, 6, 8 mA/cm2) for up to 6 h. Sodium Sulfate at a concentration of 0.05M was used as a supporting electrolyte, and 0.4 mM of Ferrous ion concentration (Fe2+) was used as a catalyst. The electrolyte cell consists of graphite modified by an electrodepositing layer of PbO2 on its surface as anode and carbon fiber modified with Graphene as a cathode. The results indicated that Phenol concentration decreases with an increase in current dens
... Show MoreThis work aim to prepare Ag/R6G/PMMA nanocomposite thin
films by In-situ plasma polymerization and study the changes in the
optical properties of fluorophore due to the presence of Ag
nanoparticles structures in the vicinity of the R6G laser dye. The
concentrations of R6G dye/MMA used are: 10-4M solutions were
prepared by dissolving the required quantity of the R6G dye in
MMAMonomer. Then Silver nanoparticles with 50 average particles
size were mixed with MMAmonomer with concentration of 0.3, 0.5,
0.7wt% to get R6G silver/MMA in liquid phase. The films were
deposited on glass substrates by dielectric barrier discharge plasma
jet. The Ag/R6G/PMMA nanocomposite thin films were
characterization by UV-Visible
In this study, out of 50 isolates of some nosocomial infections from some Baghdad hospitals, only 13 (26%) were identified as Escherichia coli. Depending on selective media, morphological and biochemical tests the species was then confirmed by molecular methods. Later on antimicrobial resistance test was performed by the Kirby-Bauer method. The molecular characterization of blaTEM and blaCTX-M genes in different clinical isolates of E. coli was done through polymerase chain reaction (PCR) by utilizing special primers. These genes were positive to only 4 (30.7%) isolates. The sequence of nucleotides of positive genes was carried out for four isolates. The results showed that there was no vari
... Show MoreThe current study performed in order to detect and quantify epicatechin in two tea samples of Camellia sinensis (black and green tea) by thin layer chromatography (TLC) and high performance liquid chromatography (HPLC). Extraction of epicatechin from black and green tea was done by using two different methods: maceration (cold extraction method) and decoction (hot extraction method) involved using three different solvents which are absolute ethanol, 50% aqueous ethanol and water for both extraction methods using room temperature and direct heat respectively. Crude extracts of two tea samples that obtained from two methods were fractionated by using two solvents with different polarity (chloroform and
... Show MoreZinc-indium-selenide ZnIn2Se4 (ZIS) ternary chalcopyrite thin film on glass with a 500 nm thickness was fabricated by using the thermal evaporation system with a pressure of approximately 2.5×10−5 mbar and a deposition rate of 12 Å/s. The effect of aluminum (Al) doping with 0.02 and 0.04 ratios on the structural and optical properties of film was examined. The utilization of X-ray diffraction (XRD) was employed to showcase the influence of aluminum doping on structural properties. XRD shows that thin ZIS-pure, Al-doped films at RT are polycrystalline with tetragonal structure and preferred (112) orientation. Where the