Background: the oral cavity is consider to be an open ecosystem, with the balance between the microorganism’s entrance and the defenses of the host. The initiation of periodontitis has been associated with restricted kinds of anaerobic bacteria, such as Aggregatibacter actinomycetemcomitans (A.a) and Porphyromonas gingivalis (P.g) in plaque subgingivally. Ozone has a biological effects on bacteria due to oxidation of bio-molecules and its toxins. The aim is to determine and compare the antimicrobial effect of gaseous ozone and ozonized water on the growth of isolated anaerobic bacteria (A.a and P.g) when exposed to different time intervals. Materials and methods:This experiment is done byozone generator OLYMPIC- III(600mg/hr) to generator the gaseous ozone (218ppm/W-air)which bypassed around the agar plates containing on of the isolated bacteria with different time intervals (1-10 minutes).And with special aeration stone for generation of ozonized water (0.6 ppm) with different time intervals (1-15 minutes). Results: Gaseousozone have a significant reduction in the bacterial growth on the agar plates for (A.a) was 7 minutes and (P.g) was 4 minutes. While ozonated water have also a significant reduction in the bacterial growth on the agar plates for (A.a) was 5 minutes and (P.g) was 4 minutes. Conclusion: Bothgaseousozone and ozonized water are a powerful antimicrobialeffects on anaerobic microorganism isolated from chronic periodontitis patients.
In this work an experimental simulation is made to predict the performance of steady-state natural heat convection along heated finned vertical base plate to ambient air with different inclination angles and configurations of fin array. Two types of fin arrays namely vertical fins array and V-fins array on heated vertical base plate are used with different heights and spaces. The influence of inclination angle of the plate , configuration of fins array and fin geometrical parameters such as fin height and fin spacing on the temperature distribution, base convection heat transfer coefficient and average Nusselt number have been plotted and discussed. The experimental data are correlated to a formula between average Nusselt number versus R
... Show MoreDiesel engine oil was subjected to thermal oxidization (TO) for six periods of time (0 h, 24 h, 48 h, 72 h, 96 h, and 120 h) and was subsequently characterized by terahertz time domain spectroscopy (THz-TDS). The THz refractive index generally increased with oxidation time. The measurement method illustrated the potential of THz-TDS when a fixed setup with a single cuvette is used. A future miniaturized setup installed in an engine would be an example of a fixed setup. For the refractive index, there were highly significant differences among the oxidation times across most of the 0.3–1.7 THz range.
Sensing insole systems are a promising technology for various applications in healthcare and sports. They can provide valuable information about the foot pressure distribution and gait patterns of different individuals. However, designing and implementing such systems poses several challenges, such as sensor selection, calibration, data processing, and interpretation. This paper proposes a sensing insole system that uses force-sensitive resistors (FSRs) to measure the pressure exerted by the foot on different regions of the insole. This system classifies four types of foot deformities: normal, flat, over-pronation, and excessive supination. The classification stage uses the differential values of pressure points as input for a feedforwar
... Show MoreBy using governing differential equation and the Rayleigh-Ritz method of minimizing the total potential energy of a thermoelastic structural system of isotropic thermoelastic thin plates, thermal buckling equations were established for rectangular plate with different fixing edge conditions and with different aspect ratio. The strain energy stored in a plate element due to bending, mid-plane thermal force and thermal bending was obtained. Three types of thermal distribution have been considered these are: uniform temperature, linear distribution and non-linear thermal distribution across thickness. It is observed that the buckling strength enhanced considerably by additional clamping of edges. Also, the thermal buckling temperatures and
... Show MoreThis paper presents thermal characteristics analysis of a modified Closed Wet Cooling Tower (CWCT) based on heat and mass transfer principles to improve the performance of this tower in Iraq. A prototype of CWCT optimized by added packing was designed, manufactured and tested for cooling capacity of 9 kW. Experiments are conducted to explore the effects of various operational and conformational parameters on the thermal performance. In the test section, spray water temperature and both dry bulb temperature and relative humidity of the air measured at intermediate points of the heat exchanger and packing. Heat exchangers consist of four rows and eight columns for an inline tubes arrangement and six rows and five columns f
... Show MoreIn this study, multi-objective optimization of nanofluid aluminum oxide in a mixture of water and ethylene glycol (40:60) is studied. In order to reduce viscosity and increase thermal conductivity of nanofluids, NSGA-II algorithm is used to alter the temperature and volume fraction of nanoparticles. Neural network modeling of experimental data is used to obtain the values of viscosity and thermal conductivity on temperature and volume fraction of nanoparticles. In order to evaluate the optimization objective functions, neural network optimization is connected to NSGA-II algorithm and at any time assessment of the fitness function, the neural network model is called. Finally, Pareto Front and the corresponding optimum points are provided and
... Show MoreIn any natural area or water body, evapotranspiration is one of the main outcomes in the water balance equation. It is also a crucial component of the hydrologic cycle and considers as the main requirement in the planning and designing of any irrigation project. The climatic parameters for the Ishaqi area are calculated from the available date of Samarra and Al-Khlais meteorological stations according to a method for the period (1982–2017) according to Fetter method. The results of the mean of rainfall, relative humidity temperature, evaporation, sunshine, and wind speed of the Ishaqi area are 171.96 mm, 49.67%, 24.86 C°, 1733.61 mm, 8.34 h/day, and 2.3 m/sec, respectively. Values of Potential Evapotranspiration are determined by
... Show MoreThe electrocoagulation process became one of the most important technologies used for water treatment processes in the last few years. It’s the preferred method to remove suspended solids and heavy metals from water for treating drinking water and wastewater from textile, diary, and electroplating factories. This research aims to study the effect of using the electrocoagulation process with aluminum electrodes on the removal efficiency of suspended solids and turbidity presented in raw water and optimizing by the response surface methodology (RSM). The most important variables studied in this research included electrode spacing, the applied voltage, and the operating time of the electrocoagulation process. The samples
... Show More