Background: Poly (methylmethacrylate) is not ideal in every aspect and has disadvantages such as insufficient surface hardness, increase water sorption and poor impact resistance and the latter being the primary cause of fracture of denture base resins. The aim of this study was to evaluate the effect of addition of silanized nano- hydroxyapatite (HA) on some properties of heat cured acrylic denture base material. Materials and methods: HA nano particles were first silanized with ï§MPS (tri methacryloxypropyletrimethoxy silane coupling agent) then ultrasonicated with methylmethacrylate (monomer) to disperse agglomerated nano particles and mixed with polymer. 2% by wt of HA nano particles was selected as the best concentration that added to the denture base material according to the pilot study.(100) specimens were prepared by conventional water bath processing technique and divided to two groups: 50 specimens for control group or 0% HA and 50 for experimental group or 2% HA then each group was subdivided to five groups with 10 specimens for each test: impact strength, transverse strength, surface hardness, surface roughness, water sorption and water solubility. Results: highly significant increase in impact strength and surface hardness after addition of 2% HA nano particles but not significant decrease in water sorption whereas solubility was significantly decreased. Surface roughness was significantly increased as compared with control group but remained within the acceptable limit less than 2ïm. HA nanoparticles addition highly decreased the transverse strength value. Conclusion The addition of 2% HA nano particles considerably improved the impact strength, surface hardness and had positive effect on water sorption and solubility. Whereas the same concentration tend to highly decreased transverse strength and increase surface roughness.
The 3D electro-Fenton technique is, due to its high efficiency, one of the technologies suggested to eliminate organic pollutants in wastewater. The type of particle electrode used in the 3D electro-Fenton process is one of the most crucial variables because of its effect on the formation of reactive species and the source of iron ions. The electrolytic cell in the current study consisted of graphite as an anode, carbon fiber (CF) modified with graphene as a cathode, and iron foam particles as a third electrode. A response surface methodology (RSM) approach was used to optimize the 3D electro-Fenton process. The RSM results revealed that the quadratic model has a high R2 of 99.05 %. At 4 g L-1 iron foam particles, time of 5 h, and
... Show MorePhase change material (PCM) is considered as one of the most effective thermal energy storage (TES) systems to balance energy supply and demand. A key challenge in designing efficient PCM-based TES systems lies in the enhancement of heat transmission during phase transition. This study numerically examines the privilege of employing twisted-fin arrays inside a shell-and-tube latent heat storage unit to improve the solidification performance. The presence of twisted fins contributes to the dominating role of heat conduction by their curved shapes, which restricts the role of natural convection but largely aids the overall heat-transfer process during solidification. The heat-discharge
The optical transmission and UV-VIS absorption spectra have been recorded in the wavelength range (200-1100m) for different composition of polyaniline and polyvinyl Alcohol(PVA ) blends thin films. Polyaniline was prepared in acidic medium to enhancement the solubility and processibility, The optical energy gap (Eopt) refractive index and optical dielectric constant real and imaginary part have been evaluated. The effects of doping percentage of prepared polyaniline on these parameters was discussed and the non –linear behavior for all these parameters was investigated.
The article discusses the spatial analysis of the chemical soil properties that is a key component of the agriculture ecosystem based on satellite images. The main objective of the present study is to measure the chemical soil properties (total dissolved salts (TDS), Electrical conductivity (EC), PH, and) and the spatial variability. On 13 November 2020 (wet season), a total of 12 soil samples were collected in the field through random sampling in the Sanam mountain-Al Zubair region south of Basra province, to contain its soil samples components of minerals and precious elements such as silica and sulfur. From experimental results, the soil sample in the sixth position has the highest concentration of TDS values, reached (5798.4
... Show MoreBackground: The aim of this study was to evaluate the shear bond strength (SBS) and adhesive remnant index (ARI) of different orthodontic adhesive systems after exposure to aging media (water storage and acid challenge). Materials and methods: Eighty human upper premolar teeth were extracted for orthodontic purposes and randomly divided into two groups (40 teeth each): the first group in which the bonded teeth were stored in distilled water for 30 days at 37°C, and the second group in which the bonded teeth were subjected to acid challenge. Each group was further subdivided into four subgroups (10 teeth each) according to the type of adhesive system that would be bonded to metal brackets: either non-fluoride releasing adhesive (NFRA),
... Show MoreABSTRACT Background: Color changes that are detectable to human eye can affect the esthetic appearance of ceramic veneers. The purpose of this study was to evaluate and compare the effect of artificial accelerated aging on the color of ceramic veneers cemented with different resin cements. Materials and Methods: Sixty discs were prepared with 0.5 mm thickness, 30 discs made from IPS e.max press (Ivoclar Vivadent) and 30 discs were made from VITA Enamic (VITA Zahnfabrik). The discs were cemented with three resin cements: Variolink Veneer MV 0 shade (Ivoclar Vivadent), Rely X veneer Translucent shade (3M ESPE) and NX3 Nexus Clear shade (Kerr Corporation) with 0.1 mm thickness. The spectrophotometer Easyshade Advance was used to measure the co
... Show MoreIron , Cobalt , and Nickel powders with different particle sizes were subjected to sieving and He-Ne laser system to determine the particle size . 1wt% from each powders was blended carefully with 99wt% from Iraqi oil . Microscopic examination were carried for all samples to reveal the particle size distribution . A Siemens type SRS sequential wavelength dispersive(WDS) X-ray spectrometer was used to analyze all samples , and the XRF intensity were determined experimentally and theoretically for all suspended samples , Good agreement between theoretical and experimental results were found .