Background: Dental implants act as infrastructure for fixed restoration to look like as a natural tooth. Osseointegration is a biological events and considered as a base for success of dental implant. The aim of this study is to evaluate the bond strength between bone and Ti implant coated with mixture of nano hydroxyapatite-chitosan-collagen compared with Ti implants coated with nano hydroxyapatite implanted in rabbit tibia, after different period of implantation time (two and six weeks) by torque removal test. Material and methods: 36 screws of commercially pure titanium; 8mm in length and 3mm diameter , 18 screws coated with mixture of nano hydroxyapatite-chitosan-collagen and18 screws coated with nano hydroxyapatite by dip coating. Structural characteristics was assessed by scanning electron microscope, and FTIR analysis. The screws were implanted in 18 healthy adult male New Zeeland rabbits each tibia received one screw, right tibia received screw coated with nano hydroxyapatite while left tibia received screw coated nano hydroxyapatite-chitosan-collagen composite. Removal torque test was done by torque meter to determine the highest torque value necessary to remove the implants from tibia bone after different period of time of implantation(2 and 6 weeks). Result: Nano hydroxyapatite-chitosan-collagen composite coating was resulting in higher torque removal value than nano hydroxyapatite coating for two periods of time. Conclusion: Concluded that addition of collagen and chitosan to nano hydroxyapatite was more efficient in rapid bone formation than nano hydroxyapatite only.
Poly(L-lactic acid) (PLLA)/poly(caprolactone) (PCL) and two types of organoclay (OMMT) including a fatty amide and ocatdecylamine montmorillonite (FA-MMT and ODA-MMT) were employed to produce polymer nanocomposites by melt blending. Materials were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), elemental analysis, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Mechanical properties were also investigated for these nanocomposites. The nanocomposites showed increasing mechanical properties and thermal stability. XRD results indicated that the materials formed nanocomposites. SEM morphology showed that increasing content of OMMT reduc
... Show MoreThe focus of this work is on systematically understanding the effects of packing density of the sand grains on both the internal and bulk mechanical properties for strip footing interacting with granular soil. The studies are based on particle image velocimetry (PIV) method, coupled with a high resolution imaging camera. This provides valuable new insights on the evolution of slip planes at grain-scale under different fractions of the ultimate load. Furthermore, the PIV based results are compared with finite element method simulations in which the experimentally characterised parameters and constitutive behaviour are fed as an input, and a good level of agreements are obtained. The reported results would serve to the practicing engineers, r
... Show MoreThe ceramic composite with different proportions of clay and silica was prepared with a grain size of 70 μm and the weight percentage was selected for four groups (clayx silica100-x) were x q15, 25, 30 and 50. In this manuscript, for each pressured sample, a sintering procedure was carried out for 3 hours under static air and at various sintering temperatures (1000, 1100, 1200, 1400)°C. After sintering, the density, porosity, water absorption, compression strength and thermal conductivity were measured. The best results were obtained using a mixture of 15% clay and 85% silica which were sintering at 1400°C for three hours under air.
This research involves studying the mechanical properties and corrosion behavior of “low carbon steel” (0.077wt% C) before and after welding using Arc, MIG and TIG welding. The mechanical properties include testing of microhardness, tensile strength, the results indicate that microhardness of TIG, MIG welding is more than arc welding, while tensile strength in arc welding more than TIG and MIG.
The corrosion behavior of low carbon weldments was performed by potentiostat at scan rate 3mV.sec-1 in 3.5% NaCl to show the polarization resistance and calculate the corrosion rate from data of linear polarization by “Tafel extrapolation method”. The results indicate that the TIG welding increase the corrosion current d
... Show MoreThe present research investigates joints welding of 304L austenitic stainless steel using metal inert gas (MIG) welding method. The research explores the effect of process parameters (arc voltage, wire feed rate, and electrode wire diameter) on the mechanical properties of stainless steel. The above variables are varied respectively with 18.5, 19, 19.5 V, 116, 127, 137 mm/s, and 0.8, 1, 1.2 mm, with E308L as a filler electrode. The design matrix of the experiments was determined using the design of experiment (DOE) program Minitab 17 based on the levels of input elements used. The Taguchi orthogonal matrix methodology (Taguchi) technique was used to develop some empirical analysis for the maximum tensile strength and proper surface
... Show MoreCarbides or nitrides thin films present materials with good mechanical properties for industrial applications as they can be coatings at low temperatures serve temperature sensitive surfaces. In this work the effect of the C percentage on the mechanical properties represented by the Young modulus (E) of combinatorial magnetron sputtered TiCx (34%x˂65%) has been studied. The structure of the produced films is TiC independent on the C concentration. The mechanical properties are increased with increasing the C concentration up to 50%, and then decreasing with further C % increasing. These results can be explained by considering the resultant residual stresses.
The research targets study of influence of additives on sand mold’s properties and, consequently, on
that of carbon steel CK45 casts produced by three molds. Three materials were selected for addition
to sand mix at weight percentages. These are sodium carbonates, glycerin and oat flour. Sand molds
of studied properties were produced to get casts from such molds. The required tests were made to
find the best additives with respect to properties of cast. ANSYS software is used to demonstrate
the stresses distribution of each produced materials. It is shown that the mechanical properties of
casts produced is improved highly with sodium carbonates and is less with oat flour and it is seem a
few with glycerin additives
A simple, rapid and environmentally friendly dispersive liquid–liquid microextraction method-based spectrophotometric method for the trace determination of folic acid has been developed. The proposed method is based on the formation of a deep yellow product via reaction of folic acid and 1,2-naphthoquine-4-sulfonate at pH = 9. The formed complex was extracted using a mixture of chloroform and ethanol. Then, the tiny organic droplets were measured at λ = 520 nm. At the optimum conditions, linearity was ranged from 0.05 to 1.5 μg/mL for the standard and samples, with a linear correlation coefficient of 0.9996. The detection limits were 0.02, 0.027, 0.03, 0.02 and 0.04 μg/mL for standard, tablet (5 mg), tablet (1 mg), syrup and fl
... Show MoreA new, simple, rapid and sensitive spectrophotometric method for the determination of sulfamethoxazole in both pure form and pharmaceutical preparations has been reported.The adapted technique based on utilization 4-aminobenzene sulfonic acid as a new modern chromogenic through an oxidative coupling reaction with sulfamethoxazole and potassium iodate in basic media to form orange soluble dye product with absorption maxima at 490 nm. Subject to Beer's law in the range 2–32μg mL-1. The values of molarabsorption coefficient (ε) and correlation coefficient were found to be 9.118 × 103 and0.9999 respectively whereas the Sandels index was
... Show More